「loj#6261」一个人的高三楼
显然存在一个这样的柿子
\]
我们可以视为\(S^{(k)}\)就是由\(S^{(k-1)}\)卷上一个长度为\(n\)全是\(1\)的多项式得来的
设这样的全是\(1\)的多项式为\(A\),给出的多项式为\(F\)我们要求的就是\(F\times A^k\)
发现\(k\)非常大,我们可以考虑把我们要求的东西变成\(F\times \exp(k\ln\ A)\),复杂度\(O(nlog n)\)
之后我就本着复习的想法去写了多项式\(\exp\),之后自闭了
好歹我最后写出来了
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int maxn=262144+5;
const int mod=998244353;
const int G[2]={3,(mod+1)/3};
int len,n,k,a[maxn],b[maxn],c[maxn],d[maxn],inv[maxn];
int g[maxn],H[maxn],K[maxn],C[maxn],rev[maxn],T[maxn];
inline int ksm(int a,int b) {
int S=1;
while(b) {if(b&1) S=1ll*S*a%mod;b>>=1;a=1ll*a*a%mod;}
return S;
}
inline int getPow() {
int x=0;char c=getchar();
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(10ll*x+c-48)%mod,c=getchar();
return x;
}
inline void NTT(int *f,int o) {
for(re int i=0;i<len;i++) if(i<rev[i]) std::swap(f[i],f[rev[i]]);
for(re int i=2;i<=len;i<<=1) {
int ln=i>>1,og1=ksm(G[o],(mod-1)/i);
for(re int l=0;l<len;l+=i) {
int t,og=1;
for(re int x=l;x<l+ln;++x) {
t=1ll*f[x+ln]*og%mod;
f[x+ln]=(f[x]-t+mod)%mod;
f[x]=(f[x]+t)%mod;
og=1ll*og*og1%mod;
}
}
}
if(!o) return;
for(re int i=0;i<len;i++) f[i]=1ll*f[i]*inv[len]%mod;
}
void Inv(int n,int *A,int *B) {
if(n==1) {B[0]=ksm(A[0],mod-2);return;}
Inv((n+1)>>1,A,B);
for(re int i=0;i<n;i++) g[i]=A[i];
for(re int i=n;i<len;i++) g[i]=0;
len=1;while(len<n+n) len<<=1;
for(re int i=0;i<len;i++) rev[i]=rev[i>>1]>>1|((i&1)?len>>1:0);
NTT(g,0),NTT(B,0);
for(re int i=0;i<len;i++) B[i]=(2ll*B[i]-1ll*g[i]*B[i]%mod*B[i]%mod+mod)%mod;
NTT(B,1);for(re int i=n;i<len;i++) B[i]=0;
}
void Ln(int n,int *A,int *B) {
memset(T,0,sizeof(T));memset(B,0,sizeof(B));
for(re int i=1;i<n;i++) T[i-1]=1ll*i*A[i]%mod;
memset(C,0,sizeof(C));Inv(n,A,C);
len=1;while(len<n+n) len<<=1;
for(re int i=0;i<len;i++) rev[i]=rev[i>>1]>>1|((i&1)?len>>1:0);
NTT(C,0),NTT(T,0);
for(re int i=0;i<len;i++) C[i]=1ll*C[i]*T[i]%mod;
NTT(C,1);for(re int i=1;i<n;i++) B[i]=1ll*C[i-1]*inv[i]%mod;
}
void Exp(int n,int *A,int *B) {
if(n==1) {B[0]=1;return;}
Exp((n+1)>>1,A,B);Ln(n,B,K);
len=1;while(len<n+n) len<<=1;
for(re int i=0;i<n;i++) K[i]=(A[i]-K[i]+mod)%mod;
for(re int i=n;i<len;i++) K[i]=0;K[0]++;
for(re int i=0;i<len;i++) rev[i]=rev[i>>1]>>1|((i&1)?len>>1:0);
NTT(K,0),NTT(B,0);
for(re int i=0;i<len;i++) B[i]=1ll*B[i]*K[i]%mod;
NTT(B,1);for(re int i=n;i<len;i++) B[i]=0;
}
int main() {
inv[1]=1;
for(re int i=2;i<maxn;i++) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
n=read();k=getPow();
for(re int i=0;i<n;i++) a[i]=read();
for(re int i=0;i<n;i++) b[i]=1;
Ln(n,b,c);
for(re int i=0;i<n;i++) c[i]=1ll*c[i]*k%mod;
Exp(n,c,d);
len=1;while(len<n+n) len<<=1;
for(re int i=0;i<len;i++) rev[i]=rev[i>>1]>>1|((i&1)?len>>1:0);
NTT(d,0),NTT(a,0);
for(re int i=0;i<len;i++) a[i]=1ll*a[i]*d[i]%mod;
NTT(a,1);for(re int i=0;i<n;i++) printf("%d\n",a[i]);
return 0;
}
之后就获得了\(20pts\)的好成绩,这个时候才提醒我们时限只有\(200ms\)
我们考虑到\(A\)这个多项式全是\(1\)肯定有一些奇妙的性质啊
考虑\(A^k(i)\)的组合意义,不就是相当于把\(i\)个球分到了\(k\)个盒子里,允许有空的方案数吗,根据经典的插板法,我们知道\(A^k(i)=\binom{i+k-1}{k-1}\)
所以我们现在就不需要把\(\exp\)了,直接用组合意义算出来之后去和\(F\)卷积就好了
代码
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int maxn=262144+5;
const int mod=998244353;
const int G[2]={3,(mod+1)/3};
inline int getPow() {
int x=0;char c=getchar();while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(10ll*x+c-48)%mod,c=getchar();
return x;
}
inline int ksm(int a,int b) {
int S=1;while(b) {if(b&1) S=1ll*S*a%mod;b>>=1;a=1ll*a*a%mod;}return S;
}
int n,len,rev[262144+5],k;
int a[262144+5],inv[262144+5],b[262144+5];
inline void NTT(int *f,int o) {
for(re int i=0;i<len;i++) if(i<rev[i]) std::swap(f[i],f[rev[i]]);
for(re int i=2;i<=len;i<<=1) {
int ln=i>>1,og1=ksm(G[o],(mod-1)/i);
for(re int l=0;l<len;l+=i) {
int t,og=1;
for(re int x=l;x<l+ln;++x) {
t=1ll*og*f[x+ln]%mod;
f[x+ln]=(f[x]-t+mod)%mod;
f[x]=(f[x]+t)%mod;
og=1ll*og*og1%mod;
}
}
}
if(!o) return;
for(re int i=0;i<len;i++) f[i]=1ll*f[i]*inv[len]%mod;
}
int main() {
n=read();k=getPow();
for(re int i=0;i<n;i++) a[i]=read();
b[0]=1;int now=k;inv[1]=1;
len=1;while(len<n+n) len<<=1;
for(re int i=0;i<len;i++) rev[i]=rev[i>>1]>>1|((i&1)?len>>1:0);
for(re int i=2;i<=len;i++) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for(re int i=1;i<n;i++) b[i]=1ll*b[i-1]*inv[i]%mod*now%mod,now++,now=now%mod;
NTT(b,0),NTT(a,0);
for(re int i=0;i<len;i++) b[i]=1ll*a[i]*b[i]%mod;
NTT(b,1);for(re int i=0;i<n;i++) printf("%d\n",b[i]);
return 0;
}
「loj#6261」一个人的高三楼的更多相关文章
- 「LOJ#10051」「一本通 2.3 例 3」Nikitosh 和异或(Trie
题目描述 原题来自:CODECHEF September Challenge 2015 REBXOR 1≤r1<l2≤r2≤N,x⨁yx\bigoplus yx⨁y 表示 ...
- 「LOJ#10056」「一本通 2.3 练习 5」The XOR-longest Path (Trie
#10056. 「一本通 2.3 练习 5」The XOR-longest Path 题目描述 原题来自:POJ 3764 给定一棵 nnn 个点的带权树,求树上最长的异或和路径. 输入格式 第一行一 ...
- 「LOJ#10050」「一本通 2.3 例 2」The XOR Largest Pair (Trie
题目描述 在给定的 $N$ 个整数 $A_1,A_2,A_3...A_n$ 中选出两个进行异或运算,得到的结果最大是多少? 输入格式 第一行一个整数$N$. 第二行$N$个整数$A_i$. 输出格式 ...
- 「CF779B」「LOJ#10201.」「一本通 6.2 练习 4」Sherlock and His Girlfriend(埃氏筛
题目描述 原题来自:Codeforces Round #400 B. Sherlock 有了一个新女友(这太不像他了!).情人节到了,他想送给女友一些珠宝当做礼物. 他买了 nnn 件珠宝.第 iii ...
- 「LOJ#10072」「一本通 3.2 例 1」Sightseeing Trip(无向图最小环问题)(Floyd
题目描述 原题来自:CEOI 1999 给定一张无向图,求图中一个至少包含 333 个点的环,环上的节点不重复,并且环上的边的长度之和最小.该问题称为无向图的最小环问题.在本题中,你需要输出最小环的方 ...
- 「LOJ#10068」「一本通 3.1 练习 3」秘密的牛奶运输(次小生成树
题目描述 Farmer John 要把他的牛奶运输到各个销售点.运输过程中,可以先把牛奶运输到一些销售点,再由这些销售点分别运输到其他销售点. 运输的总距离越小,运输的成本也就越低.低成本的运输是 F ...
- 「LOJ#10045」「一本通 2.2 练习 1」Radio Transmission (KMP
题目描述 原题来自:BalticOI 2009 给你一个字符串,它是由某个字符串不断自我连接形成的.但是这个字符串是不确定的,现在只想知道它的最短长度是多少. 输入格式 第一行给出字符串的长度 L,第 ...
- 「LOJ#10042」「一本通 2.1 练习 8」收集雪花 (map
题目描述 不同的雪花往往有不同的形状.在北方的同学想将雪花收集起来,作为礼物送给在南方的同学们.一共有 n 个时刻,给出每个时刻下落雪花的形状,用不同的整数表示不同的形状.在收集的过程中,同学们不希望 ...
- 「LOJ#10036」「一本通 2.1 练习 2」Seek the Name, Seek the Fame (Hash
题目描述 原题来自:POJ 2752 给定若干字符串(这些字符串总长 ≤4×105 \le 4\times 10^5 ≤4×105),在每个字符串中求出所有既是前缀又是后缀的子串长度. 例如:abab ...
随机推荐
- 【第三周读书笔记】浅谈node.js中的异步回调和用js-xlsx操作Excel表格
在初步学习了node.js之后,我发现他的时序问题我一直都很模糊不清,所以我专门学习了一下这一块. 首先我们来形象地理解一下进程和线程: 进程:CPU执行任务的模块.线程:模块中的最小单元. 例如:c ...
- C 常见字符串操作函数
头文件 <string.h> 1. char *strstr(const char *str1, const char *str2); 判断str2是否为str1的子串 //s ...
- JS对象 Date 日期对象 日期对象可以储存任意一个日期,并且可以精确到毫秒数(1/1000 秒)。 定义一个时间对象 : var Udate=new Date();Date()的首字母须大写
Date 日期对象 日期对象可以储存任意一个日期,并且可以精确到毫秒数(1/1000 秒). 定义一个时间对象 : var Udate=new Date(); 注意:使用关键字new,Date()的首 ...
- Ip HostName查询
https://iplist.cc/api // 在线ip hostname查询
- 如何优雅的在 vue 中添加权限控制
前言 在一个项目中,一些功能会涉及到重要的数据管理,为了确保数据的安全,我们会在项目中加入权限来限制每个用户的操作.作为前端,我们要做的是配合后端给到的权限数据,做页面上的各种各样的限制. 需求 因为 ...
- 小程序template怎样渲染页面的
template模板渲染demo wxml页面 <view class="btmcon"> <text class="btmtitle"> ...
- leetcode-50-pow()
题目描述: 方法一: class Solution: def myPow(self, x: float, n: int) -> float: if n<0: x = 1/x return ...
- VC中隐藏和显示IDC_STATIC
void CImageShowAndHideDlg::OnBnClickedButton1() //隐藏 { CWnd* pWnd = GetDlgItem(IDC_STATIC); ...
- MyBatis基础-CRUD
一.mybatis 环境搭建步骤 第一步:创建 maven 工程第二步:导入坐标第三步:编写必要代码(实体类和持久层接口)第四步:编写 SqlMapConfig.xml第五步:编写映射配置文件第六步 ...
- selenium python bindings 初步用法及简单参考例子
掌握selenium最简单的方法就是参考例子进行学习,下面给出之前项目的测试例子及分析 # -*- coding: utf-8 -*- import time from selenium import ...