题目

显然存在一个这样的柿子

\[S^{(k)}_i=\sum_{j=1}^iS^{(k-1)}_j
\]

我们可以视为\(S^{(k)}\)就是由\(S^{(k-1)}\)卷上一个长度为\(n\)全是\(1\)的多项式得来的

设这样的全是\(1\)的多项式为\(A\),给出的多项式为\(F\)我们要求的就是\(F\times A^k\)

发现\(k\)非常大,我们可以考虑把我们要求的东西变成\(F\times \exp(k\ln\ A)\),复杂度\(O(nlog n)\)

之后我就本着复习的想法去写了多项式\(\exp\),之后自闭了

好歹我最后写出来了

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int maxn=262144+5;
const int mod=998244353;
const int G[2]={3,(mod+1)/3};
int len,n,k,a[maxn],b[maxn],c[maxn],d[maxn],inv[maxn];
int g[maxn],H[maxn],K[maxn],C[maxn],rev[maxn],T[maxn];
inline int ksm(int a,int b) {
int S=1;
while(b) {if(b&1) S=1ll*S*a%mod;b>>=1;a=1ll*a*a%mod;}
return S;
}
inline int getPow() {
int x=0;char c=getchar();
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(10ll*x+c-48)%mod,c=getchar();
return x;
}
inline void NTT(int *f,int o) {
for(re int i=0;i<len;i++) if(i<rev[i]) std::swap(f[i],f[rev[i]]);
for(re int i=2;i<=len;i<<=1) {
int ln=i>>1,og1=ksm(G[o],(mod-1)/i);
for(re int l=0;l<len;l+=i) {
int t,og=1;
for(re int x=l;x<l+ln;++x) {
t=1ll*f[x+ln]*og%mod;
f[x+ln]=(f[x]-t+mod)%mod;
f[x]=(f[x]+t)%mod;
og=1ll*og*og1%mod;
}
}
}
if(!o) return;
for(re int i=0;i<len;i++) f[i]=1ll*f[i]*inv[len]%mod;
}
void Inv(int n,int *A,int *B) {
if(n==1) {B[0]=ksm(A[0],mod-2);return;}
Inv((n+1)>>1,A,B);
for(re int i=0;i<n;i++) g[i]=A[i];
for(re int i=n;i<len;i++) g[i]=0;
len=1;while(len<n+n) len<<=1;
for(re int i=0;i<len;i++) rev[i]=rev[i>>1]>>1|((i&1)?len>>1:0);
NTT(g,0),NTT(B,0);
for(re int i=0;i<len;i++) B[i]=(2ll*B[i]-1ll*g[i]*B[i]%mod*B[i]%mod+mod)%mod;
NTT(B,1);for(re int i=n;i<len;i++) B[i]=0;
}
void Ln(int n,int *A,int *B) {
memset(T,0,sizeof(T));memset(B,0,sizeof(B));
for(re int i=1;i<n;i++) T[i-1]=1ll*i*A[i]%mod;
memset(C,0,sizeof(C));Inv(n,A,C);
len=1;while(len<n+n) len<<=1;
for(re int i=0;i<len;i++) rev[i]=rev[i>>1]>>1|((i&1)?len>>1:0);
NTT(C,0),NTT(T,0);
for(re int i=0;i<len;i++) C[i]=1ll*C[i]*T[i]%mod;
NTT(C,1);for(re int i=1;i<n;i++) B[i]=1ll*C[i-1]*inv[i]%mod;
}
void Exp(int n,int *A,int *B) {
if(n==1) {B[0]=1;return;}
Exp((n+1)>>1,A,B);Ln(n,B,K);
len=1;while(len<n+n) len<<=1;
for(re int i=0;i<n;i++) K[i]=(A[i]-K[i]+mod)%mod;
for(re int i=n;i<len;i++) K[i]=0;K[0]++;
for(re int i=0;i<len;i++) rev[i]=rev[i>>1]>>1|((i&1)?len>>1:0);
NTT(K,0),NTT(B,0);
for(re int i=0;i<len;i++) B[i]=1ll*B[i]*K[i]%mod;
NTT(B,1);for(re int i=n;i<len;i++) B[i]=0;
}
int main() {
inv[1]=1;
for(re int i=2;i<maxn;i++) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
n=read();k=getPow();
for(re int i=0;i<n;i++) a[i]=read();
for(re int i=0;i<n;i++) b[i]=1;
Ln(n,b,c);
for(re int i=0;i<n;i++) c[i]=1ll*c[i]*k%mod;
Exp(n,c,d);
len=1;while(len<n+n) len<<=1;
for(re int i=0;i<len;i++) rev[i]=rev[i>>1]>>1|((i&1)?len>>1:0);
NTT(d,0),NTT(a,0);
for(re int i=0;i<len;i++) a[i]=1ll*a[i]*d[i]%mod;
NTT(a,1);for(re int i=0;i<n;i++) printf("%d\n",a[i]);
return 0;
}

之后就获得了\(20pts\)的好成绩,这个时候才提醒我们时限只有\(200ms\)

我们考虑到\(A\)这个多项式全是\(1\)肯定有一些奇妙的性质啊

考虑\(A^k(i)\)的组合意义,不就是相当于把\(i\)个球分到了\(k\)个盒子里,允许有空的方案数吗,根据经典的插板法,我们知道\(A^k(i)=\binom{i+k-1}{k-1}\)

所以我们现在就不需要把\(\exp\)了,直接用组合意义算出来之后去和\(F\)卷积就好了

代码

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define re register
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int maxn=262144+5;
const int mod=998244353;
const int G[2]={3,(mod+1)/3};
inline int getPow() {
int x=0;char c=getchar();while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(10ll*x+c-48)%mod,c=getchar();
return x;
}
inline int ksm(int a,int b) {
int S=1;while(b) {if(b&1) S=1ll*S*a%mod;b>>=1;a=1ll*a*a%mod;}return S;
}
int n,len,rev[262144+5],k;
int a[262144+5],inv[262144+5],b[262144+5];
inline void NTT(int *f,int o) {
for(re int i=0;i<len;i++) if(i<rev[i]) std::swap(f[i],f[rev[i]]);
for(re int i=2;i<=len;i<<=1) {
int ln=i>>1,og1=ksm(G[o],(mod-1)/i);
for(re int l=0;l<len;l+=i) {
int t,og=1;
for(re int x=l;x<l+ln;++x) {
t=1ll*og*f[x+ln]%mod;
f[x+ln]=(f[x]-t+mod)%mod;
f[x]=(f[x]+t)%mod;
og=1ll*og*og1%mod;
}
}
}
if(!o) return;
for(re int i=0;i<len;i++) f[i]=1ll*f[i]*inv[len]%mod;
}
int main() {
n=read();k=getPow();
for(re int i=0;i<n;i++) a[i]=read();
b[0]=1;int now=k;inv[1]=1;
len=1;while(len<n+n) len<<=1;
for(re int i=0;i<len;i++) rev[i]=rev[i>>1]>>1|((i&1)?len>>1:0);
for(re int i=2;i<=len;i++) inv[i]=1ll*(mod-mod/i)*inv[mod%i]%mod;
for(re int i=1;i<n;i++) b[i]=1ll*b[i-1]*inv[i]%mod*now%mod,now++,now=now%mod;
NTT(b,0),NTT(a,0);
for(re int i=0;i<len;i++) b[i]=1ll*a[i]*b[i]%mod;
NTT(b,1);for(re int i=0;i<n;i++) printf("%d\n",b[i]);
return 0;
}

「loj#6261」一个人的高三楼的更多相关文章

  1. 「LOJ#10051」「一本通 2.3 例 3」Nikitosh 和异或(Trie

    题目描述 原题来自:CODECHEF September Challenge 2015 REBXOR 1​​≤r​1​​<l​2​​≤r​2​​≤N,x⨁yx\bigoplus yx⨁y 表示 ...

  2. 「LOJ#10056」「一本通 2.3 练习 5」The XOR-longest Path (Trie

    #10056. 「一本通 2.3 练习 5」The XOR-longest Path 题目描述 原题来自:POJ 3764 给定一棵 nnn 个点的带权树,求树上最长的异或和路径. 输入格式 第一行一 ...

  3. 「LOJ#10050」「一本通 2.3 例 2」The XOR Largest Pair (Trie

    题目描述 在给定的 $N$ 个整数 $A_1,A_2,A_3...A_n$ 中选出两个进行异或运算,得到的结果最大是多少? 输入格式 第一行一个整数$N$. 第二行$N$个整数$A_i$. 输出格式 ...

  4. 「CF779B」「LOJ#10201.」「一本通 6.2 练习 4」Sherlock and His Girlfriend(埃氏筛

    题目描述 原题来自:Codeforces Round #400 B. Sherlock 有了一个新女友(这太不像他了!).情人节到了,他想送给女友一些珠宝当做礼物. 他买了 nnn 件珠宝.第 iii ...

  5. 「LOJ#10072」「一本通 3.2 例 1」Sightseeing Trip(无向图最小环问题)(Floyd

    题目描述 原题来自:CEOI 1999 给定一张无向图,求图中一个至少包含 333 个点的环,环上的节点不重复,并且环上的边的长度之和最小.该问题称为无向图的最小环问题.在本题中,你需要输出最小环的方 ...

  6. 「LOJ#10068」「一本通 3.1 练习 3」秘密的牛奶运输(次小生成树

    题目描述 Farmer John 要把他的牛奶运输到各个销售点.运输过程中,可以先把牛奶运输到一些销售点,再由这些销售点分别运输到其他销售点. 运输的总距离越小,运输的成本也就越低.低成本的运输是 F ...

  7. 「LOJ#10045」「一本通 2.2 练习 1」Radio Transmission (KMP

    题目描述 原题来自:BalticOI 2009 给你一个字符串,它是由某个字符串不断自我连接形成的.但是这个字符串是不确定的,现在只想知道它的最短长度是多少. 输入格式 第一行给出字符串的长度 L,第 ...

  8. 「LOJ#10042」「一本通 2.1 练习 8」收集雪花 (map

    题目描述 不同的雪花往往有不同的形状.在北方的同学想将雪花收集起来,作为礼物送给在南方的同学们.一共有 n 个时刻,给出每个时刻下落雪花的形状,用不同的整数表示不同的形状.在收集的过程中,同学们不希望 ...

  9. 「LOJ#10036」「一本通 2.1 练习 2」Seek the Name, Seek the Fame (Hash

    题目描述 原题来自:POJ 2752 给定若干字符串(这些字符串总长 ≤4×105 \le 4\times 10^5 ≤4×105),在每个字符串中求出所有既是前缀又是后缀的子串长度. 例如:abab ...

随机推荐

  1. RabbitMQ探索之路(二):RabbitMQ在Linux下的安装

    引言 消息队列现在在互联网项目中应用的还是非常多的,在接下来的博客中小编会深入的了解MQ的实现过程,在此博客中将介绍如何在centos7下面安装MQ以及遇到的问题. 第一步:安装Erlang 因为ra ...

  2. 【BZOJ2298】【luoguP2519】problem a

    description 一次考试共有n个人参加,第i个人说:"有ai个人分数比我高,bi个人分数比我低."问最少有几个人没有说真话(可能有相同的分数) analysis 这题转化模 ...

  3. 0704 Process继承实现多进程、Pool进程池,进程间通过队列通信,Pool实现多进程实现复制文件

    通过继承的方式,实现Process多进程 from multiprocessing import Process import time class MyNewProcess(Process): de ...

  4. LUOGU P3919 【模板】可持久化数组(主席树)

    传送门 解题思路 给每一时刻建一棵线段树维护当前时刻的值,然后修改的时候直接修改,查询的时候直接查,记住查询完后一定要复制. 代码 #include<iostream> #include& ...

  5. vue双向绑定的原理

    什么是双向数据绑定?Vue是一个MVVM框架,数据绑定简单来说,就是当数据发生变化时,相应的视图会进行更新,当视图更新时,数据也会跟着变化. 实现数据绑定的方式大致有以下几种: - 1.发布者-订阅者 ...

  6. Android NDK应用原理

    转:http://shihongzhi.com/ndk/ 那么首先看一下Android的系统框架: 最底层是Linux Kernel,然后上面是封装的库及Android runtime.再上面是App ...

  7. Super OJ 序列计数

    题意: 给出序列 a1,a2,--an(0≤ai≤109),求三元组(ai,aj,ak)(1≤i<j<k≤n)满足 ai<aj>ak 的数量. 分析: 开两个\(BIT\),分 ...

  8. 详解JDBC与Hibernate区别

    详解JDBC与Hibernate区别 引用地址:http://www.cnblogs.com/JemBai/archive/2011/04/13/2014940.html 刚开始学习JAVA时,认为H ...

  9. 解析Asp.net Core中使用Session的方法

    2017年就这么悄无声息的开始了,2017年对我来说又是特别重要的一年. 元旦放假在家写了个Asp.net Core验证码登录, 做demo的过程中遇到两个小问题,第一是在Asp.net Core中引 ...

  10. (十一)Json文件配置

    接上一节,新建一个项目:JsonConfigSample 依然添加Microsoft.AspNetCore.All 在项目下新建一个Class.json配置文件 { ", "Cla ...