机器学习——提升方法AdaBoost算法,推导过程
0提升的基本方法
对于分类的问题,给定一个训练样本集,求比较粗糙的分类规则(弱分类器)要比求精确的分类的分类规则(强分类器)容易的多。提升的方法就是从弱分类器算法出发,反复学习,得到一系列弱分类器(又称为基本分类器),然后组合这些弱分类器,构成一个强分类器。大多数的提升方法都是改变训练数据集的概率分布(训练数据的权值分布),针对不同的训练数据分布调用弱学习算法学习一系列弱分类器。
这样,对于提升方法来说,有两个问题需要回答:一是在每一轮如何改变训练数据的权值或概率分布,二是如何将弱分类器组合成一个强分类器。对于第一个问题,AdaBoost的做法是提高那些被前一轮弱分类器错误分类样本的权值,降低那些被正确分类的样本的权值。如此,那些被分类错误的样本将更加受到关注。对于第二个问题,AdaBoost采取多数表决的法法,具体的,加大分类误差率小的弱分类器的权值,使其的作用较大,减小那些分类错误率大的分类器的权值,使其在表决中起较小的作用。
1.AdaBoost算法
AdaBoost算法从训练数据中学习一系列弱分类器或者基本分类器,并将这些分类器进行线性组合。
输入:训练数据集T={(x1,y1),(x2,y2),(x3,y3)......},y的类别为{-1,1}
输出:最终的分类器G(x)
(1)初始化训练数据的权值分布
(2)对m=1,2,.....,M
(a)使用具有权值分布的Dm训练数据集进行学习,得到基本分类器
(b)计算Gm(x)在训练数据集上的分类误差率
(c)计算Gm(x)的系数
这里的对数是自然对数
(d)更新训练数据集的权值分布
其中,Zm是归一化因子。
(3)构建基本的分类器的线性组合
得到最终的分类器:
2算法详解
对于算法做如下的解释:
对于原始的数据集,假设其为均匀分布,则能够在原始数据集上面得到基本分类器。得到的权值通过改变分类误差率进而改变分类器的系数,对于基本分类器Gm(x)的系数am,am表示Gm(x)在最终分类器的重要性,当em<=0.5时,am>0,am随着em的减小而增大,所以分类误差率越小的基本分类器在最终的分类器的作用越大。
M个分类器的加权表决,系数am表示了基本分类器GM(x)的重要性,am之和并不为1,由f(x)的符号决定实例x的类,f(x)的绝对值表示分类的确信度。
机器学习——提升方法AdaBoost算法,推导过程的更多相关文章
- 机器学习理论提升方法AdaBoost算法第一卷
AdaBoost算法内容来自<统计学习与方法>李航,<机器学习>周志华,以及<机器学习实战>Peter HarringTon,相互学习,不足之处请大家多多指教! 提 ...
- 08_提升方法_AdaBoost算法
今天是2020年2月24日星期一.一个又一个意外因素串连起2020这不平凡的一年,多么希望时间能够倒退.曾经觉得电视上科比的画面多么熟悉,现在全成了陌生和追忆. GitHub:https://gith ...
- 统计学习方法c++实现之七 提升方法--AdaBoost
提升方法--AdaBoost 前言 AdaBoost是最经典的提升方法,所谓的提升方法就是一系列弱分类器(分类效果只比随机预测好一点)经过组合提升最后的预测效果.而AdaBoost提升方法是在每次训练 ...
- 模型提升方法adaBoost
他通过改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能. adaboost提高那些被前一轮弱分类器错误分类样本的权重,而降低那些被正确分类样本的权重,这样使得,那些没有得 ...
- 机器学习实战之AdaBoost算法
一,引言 前面几章的介绍了几种分类算法,当然各有优缺.如果将这些不同的分类器组合起来,就构成了我们今天要介绍的集成方法或者说元算法.集成方法有多种形式:可以使多种算法的集成,也可以是一种算法在不同设置 ...
- 提升方法-AdaBoost
提升方法通过改变训练样本的权重,学习多个分类器(弱分类器/基分类器)并将这些分类器进行线性组合,提高分类的性能. AdaBoost算法的特点是不改变所给的训练数据,而不断改变训练数据权值的分布,使得训 ...
- 《机器学习技法》---AdaBoost算法
1 AdaBoost的推导 首先,直接给出AdaBoost算法的核心思想是:在原数据集上经过取样,来生成不同的弱分类器,最终再把这些弱分类器聚合起来. 关键问题有如下几个: (1)取样怎样用数学方式表 ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法分类模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
随机推荐
- 2019-9-2-git-需要知道的1000个问题
title author date CreateTime categories git 需要知道的1000个问题 lindexi 2019-09-02 10:12:31 +0800 2018-2-13 ...
- RBF神经网络通用函数 newrb, newrbe
RBF神经网络通用函数 newrb, newrbe 1.newrb 其中P为输入向量,T为输出向量,GOAL为均方误差的目标,SPREED为径向基的扩展速度.返回值是一个构建好的网络,用newrb ...
- HTML5 meta 属性整理
<!DOCTYPE html> <!-- 使用 HTML5 doctype,不区分大小写 --> <html lang="zh-cmn-Hans"&g ...
- vue-上传文件
<label for="exampleInputFile">头像</label> <img :src=" imgsrc != '' ? im ...
- linux 定时器 API
内核提供给驱动许多函数来声明, 注册, 以及去除内核定时器. 下列的引用展示了基本的 代码块: #include <linux/timer.h> struct timer_list { / ...
- 一道非常棘手的 Java 面试题:i++ 是线程安全的吗
转载自 一道非常棘手的 Java 面试题:i++ 是线程安全的吗 i++ 是线程安全的吗? 相信很多中高级的 Java 面试者都遇到过这个问题,很多对这个不是很清楚的肯定是一脸蒙逼.内心肯定还在质疑 ...
- C# 如何引用 WshShell 类
如果想要创建快捷方式等,很多使用都需要引用 WshShell 类,这个类需要通过 COM 的方法引用 引用 WshShell 不是在一个程序集,而是 Windows Script Host Objec ...
- Linux 内核 启动时间
为见到 PCI 如何工作的, 我们从系统启动开始, 因为那是设备被配置的时候. 当一个 PCI 设备上电时, 硬件保持非激活. 换句话说, 设备只响应配置交易. 在上电时, 设备没有内存并且没有 I/ ...
- Linux 内核 EISA 总线
扩展 ISA (EISA) 总线是一个对 ISA 的 32-位 扩展, 带有一个兼容的接口连接器; ISA 设备板可被插入一个 EISA 连接器. 增加的线在 ISA 接触之下被连接. 如同 PCI ...
- windows键的妙用
(1)当你需要暂时离开电脑一会儿,怕其余人动你的电脑时,你只需要按windows键+L就可以了,当然前提是你给自己的电脑设置过开机密码. (2)有时候你需要在盘里边找某个文件,但你的桌面上密密麻麻的, ...