LOJ #2877. 「JOISC 2014 Day2」交朋友 并查集+BFS
这种图论问题都挺考验小思维的.
首先,我们把从 $x$ 连出去两条边的都合并了.
然后再去合并从 $x$ 连出去一条原有边与一条新边的情况.
第一种情况直接枚举就行,第二种情况来一个多源 bfs 即可.
code:
#include <cstdio>
#include <string>
#include <vector>
#include <queue>
#include <algorithm>
#define N 100006
#define ll long long
using namespace std;
namespace IO
{
inline void setIO(string s)
{
string in=s+".in";
string out=s+".out";
freopen(in.c_str(),"r",stdin);
// freopen(out.c_str(),"w",stdout);
}
};
int edges;
queue<int>q;
vector<int>G[N];
int size[N],p[N],out[N],vis[N];
inline void add(int u,int v) { G[u].push_back(v); }
inline int find(int x) { return p[x]==x?x:p[x]=find(p[x]); }
inline void initialize() { for(int i=0;i<N;++i) size[i]=1,p[i]=i; }
int main()
{
// IO::setIO("input");
int i,j,n,m;
initialize();
scanf("%d%d",&n,&m);
for(i=1;i<=m;++i)
{
int x,y;
scanf("%d%d",&x,&y),++out[x],add(x,y);
}
for(i=1;i<=n;++i)
{
for(j=1;j<G[i].size();++j)
{
int pr=G[i][j-1],cur=G[i][j];
if(find(pr)!=find(cur))
{
pr=find(pr),cur=find(cur);
p[pr]=cur,size[cur]+=size[pr];
}
}
}
for(i=1;i<=n;++i)
{
int x=find(i);
if(size[x]>1) q.push(i),vis[i]=1;
}
while(!q.empty())
{
int u=q.front(); q.pop();
for(i=0;i<G[u].size();++i)
{
int v=G[u][i];
if(find(v)!=find(u))
{
int a=find(u),b=find(v);
p[a]=b,size[b]+=size[a];
}
if(!vis[v]) q.push(v),vis[v]=1;
}
}
ll ans=0;
for(i=1;i<=n;++i)
{
if(p[i]==i)
ans+=(size[i]>1?(ll)(size[i]-1)*size[i]:out[i]);
}
printf("%lld\n",ans);
return 0;
}
LOJ #2877. 「JOISC 2014 Day2」交朋友 并查集+BFS的更多相关文章
- [LOJ#2878]. 「JOISC 2014 Day2」邮戳拉力赛[括号序列dp]
题意 题目链接 分析 如果走到了下行车站就一定会在前面的某个车站走回上行车站,可以看成是一对括号. 我们要求的就是 类似 代价最小的括号序列匹配问题,定义 f(i,j) 表示到 i 有 j 个左括号没 ...
- LOJ #2876. 「JOISC 2014 Day2」水壶 BFS+最小生成树+倍增LCA
非常好的一道图论问题. 显然,我们要求城市间的最小生成树,然后查询路径最大值. 然后我们有一个非常神的处理方法:进行多源 BFS,处理出每一个城市的管辖范围. 显然,如果两个城市的管辖范围没有交集的话 ...
- bzoj4244 & loj2878. 「JOISC 2014 Day2」邮戳拉力赛 括号序列+背包
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4244 https://loj.ac/problem/2878 题解 挺妙的一道题. 一开始一直 ...
- LOJ#2882. 「JOISC 2014 Day4」两个人的星座(计算几何)
题面 传送门 题解 我们发现如果两个三角形相离,那么这两个三角形一定存在两条公切线 那么我们可以\(O(n^2)\)枚举其中一条公切线,然后可以暴力\(O(n^3)\)计算 怎么优化呢?我们可以枚举一 ...
- 【LOJ】#3034. 「JOISC 2019 Day2」两道料理
LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...
- 【LOJ】#3033. 「JOISC 2019 Day2」两个天线
LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...
- 「JOISC 2014 Day1」巴士走读
「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...
- 「JOISC 2014 Day1」 历史研究
「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加, ...
- loj 2759「JOI 2014 Final」飞天鼠
loj 这题有在一棵树上上升或者下降的操作,稍加分析后可以发现上升操作如果不是一定要做(指高度不足以到下一棵树或者是最后到达\(n\))就不做,下降操作也是如果不是一定要做(指到达下一棵树时高度过高) ...
随机推荐
- 《阿k学Python》一Python入门(一)
前言 各位看博客的园友们,大家好,我就是那个风流倜傥的KK,还记得我那篇2019年的年中总结博客吗?我想有许多看博客的园友是没有读过我那篇文章的,KK很生气,后果很严重(开个玩笑了,怎么可能).给大家 ...
- vue2.x中使用三元表达式绑定class的时候遇到的坑
这个确实是个坑,而且是来自文档的坑. 首先先看文档对这个的解释: 从实际的代码书写上,文档中的写法,vs code没报错,但是浏览器报了一堆的错. 我试了很多遍,发现类名必须是要用引号引起来,页面上语 ...
- 红帽RedHat 8.0新特性(网络、yum源、Web界面管理等)
1.Red Hat8 配置静态IP 注意:Red Hat8网络管理默认使用NetworkManager,而不是之前版本的network. 按照之前版本我们一般通过配置文件设置静态IP地址信息,如下: ...
- 在Navicat新建用户
1.Ctrl+Q,进入查询,创建表空间. 输入create tablespace test datafile 'D:\Oracle\test.ora' size 1000m; 这里的test为表空间名 ...
- C++调用DLL方法
调用的原理: 调用DLL,首先需要将DLL文件映像到用户进程的地址空间中,然后才能进行函数调用,这个函数和进程内部一般函数的调用方法相同.Windows提供了两种将DLL映像到进程地址空间的方法:隐式 ...
- java设计模式3——建造者模式
java设计模式3--建造者模式 1.建造者模式介绍: 建造者模式属于创建型模式,他提供了一种创建对象得最佳方式 定义: 将一个复杂对象的构建和与它的表示分离,使得同样的构建过程可以创建不同的表示 主 ...
- BZOJ 1087 [SCOI2005]互不侵犯King(状压DP)
题意:在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子.n<=9 思路:状压dp,dp[i][ ...
- Standby Redo Logs的前世今生与最佳实践
编辑手记:使用过Data Guard的人应该对于Standby Redo Logs都不陌生,在配置了 Standby Redo Logs的standby中,能够进行日志的实时应用,同时Standby ...
- MySQL中遍历查询结果的常用API(c)
本中所使用的table: MySQL中的错误处理函数 unsigned int mysql_errno(MYSQL *mysql) const char *mysql_error(MYSQL *mys ...
- kali重置root密码
像这样,kali系统的root密码忘记了,只需一分钟时间,快速重置root密码 第一步: 电脑开机后kali系统会进入引导界面,这是我们只需 “e” 进入启动前编辑命令(若系统没有出现这个页面,大家在 ...