LOJ #2877. 「JOISC 2014 Day2」交朋友 并查集+BFS
这种图论问题都挺考验小思维的.
首先,我们把从 $x$ 连出去两条边的都合并了.
然后再去合并从 $x$ 连出去一条原有边与一条新边的情况.
第一种情况直接枚举就行,第二种情况来一个多源 bfs 即可.
code:
#include <cstdio>
#include <string>
#include <vector>
#include <queue>
#include <algorithm>
#define N 100006
#define ll long long
using namespace std;
namespace IO
{
inline void setIO(string s)
{
string in=s+".in";
string out=s+".out";
freopen(in.c_str(),"r",stdin);
// freopen(out.c_str(),"w",stdout);
}
};
int edges;
queue<int>q;
vector<int>G[N];
int size[N],p[N],out[N],vis[N];
inline void add(int u,int v) { G[u].push_back(v); }
inline int find(int x) { return p[x]==x?x:p[x]=find(p[x]); }
inline void initialize() { for(int i=0;i<N;++i) size[i]=1,p[i]=i; }
int main()
{
// IO::setIO("input");
int i,j,n,m;
initialize();
scanf("%d%d",&n,&m);
for(i=1;i<=m;++i)
{
int x,y;
scanf("%d%d",&x,&y),++out[x],add(x,y);
}
for(i=1;i<=n;++i)
{
for(j=1;j<G[i].size();++j)
{
int pr=G[i][j-1],cur=G[i][j];
if(find(pr)!=find(cur))
{
pr=find(pr),cur=find(cur);
p[pr]=cur,size[cur]+=size[pr];
}
}
}
for(i=1;i<=n;++i)
{
int x=find(i);
if(size[x]>1) q.push(i),vis[i]=1;
}
while(!q.empty())
{
int u=q.front(); q.pop();
for(i=0;i<G[u].size();++i)
{
int v=G[u][i];
if(find(v)!=find(u))
{
int a=find(u),b=find(v);
p[a]=b,size[b]+=size[a];
}
if(!vis[v]) q.push(v),vis[v]=1;
}
}
ll ans=0;
for(i=1;i<=n;++i)
{
if(p[i]==i)
ans+=(size[i]>1?(ll)(size[i]-1)*size[i]:out[i]);
}
printf("%lld\n",ans);
return 0;
}
LOJ #2877. 「JOISC 2014 Day2」交朋友 并查集+BFS的更多相关文章
- [LOJ#2878]. 「JOISC 2014 Day2」邮戳拉力赛[括号序列dp]
题意 题目链接 分析 如果走到了下行车站就一定会在前面的某个车站走回上行车站,可以看成是一对括号. 我们要求的就是 类似 代价最小的括号序列匹配问题,定义 f(i,j) 表示到 i 有 j 个左括号没 ...
- LOJ #2876. 「JOISC 2014 Day2」水壶 BFS+最小生成树+倍增LCA
非常好的一道图论问题. 显然,我们要求城市间的最小生成树,然后查询路径最大值. 然后我们有一个非常神的处理方法:进行多源 BFS,处理出每一个城市的管辖范围. 显然,如果两个城市的管辖范围没有交集的话 ...
- bzoj4244 & loj2878. 「JOISC 2014 Day2」邮戳拉力赛 括号序列+背包
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4244 https://loj.ac/problem/2878 题解 挺妙的一道题. 一开始一直 ...
- LOJ#2882. 「JOISC 2014 Day4」两个人的星座(计算几何)
题面 传送门 题解 我们发现如果两个三角形相离,那么这两个三角形一定存在两条公切线 那么我们可以\(O(n^2)\)枚举其中一条公切线,然后可以暴力\(O(n^3)\)计算 怎么优化呢?我们可以枚举一 ...
- 【LOJ】#3034. 「JOISC 2019 Day2」两道料理
LOJ#3034. 「JOISC 2019 Day2」两道料理 找出最大的\(y_{i}\)使得\(sumA_{i} + sumB_{y_i} \leq S_{i}\) 和最大的\(x_{j}\)使得 ...
- 【LOJ】#3033. 「JOISC 2019 Day2」两个天线
LOJ#3033. 「JOISC 2019 Day2」两个天线 用后面的天线更新前面的天线,线段树上存历史版本的最大值 也就是线段树需要维护历史版本的最大值,后面的天线的标记中最大的那个和最小的那个, ...
- 「JOISC 2014 Day1」巴士走读
「JOISC 2014 Day1」巴士走读 将询问离线下来. 从终点出发到起点. 由于在每个点(除了终点)的时间被过来的边固定,因此如果一个点不被新的边更新,是不会发生变化的. 因此可以按照时间顺序, ...
- 「JOISC 2014 Day1」 历史研究
「JOISC 2014 Day1」 历史研究 Solution 子任务2 暴力,用\(cnt\)记录每种权值出现次数. 子任务3 这不是一个尺取吗... 然后用multiset维护当前的区间,动态加, ...
- loj 2759「JOI 2014 Final」飞天鼠
loj 这题有在一棵树上上升或者下降的操作,稍加分析后可以发现上升操作如果不是一定要做(指高度不足以到下一棵树或者是最后到达\(n\))就不做,下降操作也是如果不是一定要做(指到达下一棵树时高度过高) ...
随机推荐
- git使用中遇到的问题
1.拉取时报错:Permission denied (publickey) 先检查一下你的乌龟设置是否用的不是乌龟自己的SSH 2.TortoiseGit报错: Couldn’t load this ...
- C++从array数组向vector向量复制元素的两种方式
#include <iostream> #include <vector> using namespace std; int main() { const int arr_si ...
- Selenium(一):元素定位
一.Selenium 8种定位方式 baidu.html <form id="form" name="f" action="/s" c ...
- javabst1
(单选题)下列概念中不包括任何实现,与存储空间没有任何关系的是() A)类 B)接口 C)抽象类 D)对象 2.(单选题)HTTP状态码中表示请求资源不存在的是(). A)100 B)200 C)30 ...
- appcompat_v7 res values-v21 error
[2014-11-03 11:30:25 - AndroidApp] appcompat_v7/res/values-v21/styles_base.xml:75: error: Error retr ...
- 【WPF学习】第三十九章 理解形状
在WPF用户界面中,绘制2D图形内容的最简单方法是使用形状(shape)——专门用于表示简单的直线.椭圆.矩形以及多变形的一些类.从技术角度看,形状就是所谓的绘图图元(primitive).可组合这些 ...
- session学习总结【session原理、应用、与cookie区别】
session原理 session也是一种记录浏览器状态的机制,但与cookie不同的是,session是保存在服务器中. 由于http是无状态协议,当服务器存储了多个用户的session数据时,如何 ...
- Codeforces Gym101234G Dreamoon and NightMarket(优先队列,子集和第k大)
题意: 求子集和第k大,n,k<=1e6 思路: 优先队列经典题目,注意优先队列是默认按从大到小排的 代码: #include<iostream> #include<cstdi ...
- 2018icpc徐州网络赛-H Ryuji doesn't want to study(线段树)
题意: 有n个数的一个数组a,有两个操作: 1 l r:查询区间[l,r]内$a[l]*(r-l+1)+a[l+1]*(r-l)+a[l+2]*(r-l-1)+\cdots+a[r-1]*2+a[r] ...
- Excel VBA: 自动生成巡检报表并通过邮件定时发送
目录 环境说明逻辑结构效果说明及截图①.安装SecureCRT②. 自动巡检脚本③. 数据检索并FTP传送④. 安装Excel 2013⑤. 安装Serv-U⑥. 自动生成图表并邮件发送 环境说明 系 ...