[CERC2017]Gambling Guide
看起来非常随机游走,但是由于我们可以停在原地,所以变得不是非常一样
设$f_x$表示从$x$到$n$的期望距离
如果我们提前知道了$f$,那么我们随机到了一张到$y$的车票,发现$f_y>f_x$,那么我们不如停在原地再随一张
所以就有
\(f_x=\frac{\sum_{(x,y)\in e}1+\min(f_x,f_y)}{d_x}=1+\frac{\sum_{(x,y)\in e}\min(f_x,f_y)}{d_x}\)
这个式子不是很好看,我们将其改写一下
\(f_x=1+\frac{\sum_{(x,y)\in e}[f_y<f_x]f_y+f_x(d-\sum_{(x,y)\in e}[f_y<f_x])}{d_x}=\frac{d_x+\sum_{(x,y)\in e}[f_y<f_x]f_y}{\sum_{(x,y)\in e}[f_y<f_x]}\)
根据这个式子只有比较小的$f_y$才能去更新$f_x$,于是我们做一个类似于$\rm Dijkstra$的过程,每次从堆顶取出最小的$f_y$去更新即可
代码
#include<bits/stdc++.h>
#define re register
#define mp std::make_pair
inline int read() {
char c=getchar();int x=0;while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9') x=(x<<3)+(x<<1)+c-48,c=getchar();return x;
}
const int maxn=3e5+5;
typedef std::pair<double,int> pii;
std::priority_queue<pii,std::vector<pii>,std::greater<pii> > q;
struct E{int v,nxt;}e[maxn<<1];
int n,num,m;
double dis[maxn],s[maxn],p[maxn];
int du[maxn],head[maxn],vis[maxn];
inline void add(int x,int y) {e[++num].v=y;e[num].nxt=head[x];head[x]=num;}
int main() {
n=read(),m=read();
for(re int x,y,i=1;i<=m;i++)
x=read(),y=read(),du[x]++,du[y]++,add(x,y),add(y,x);
dis[n]=0,q.push(mp(dis[n],n));
while(!q.empty()) {
int k=q.top().second;q.pop();
if(vis[k]) continue;vis[k]=1;
for(re int i=head[k];i;i=e[i].nxt) {
if(vis[e[i].v]) continue;
p[e[i].v]+=1;s[e[i].v]+=dis[k];
dis[e[i].v]=(du[e[i].v]+s[e[i].v])/p[e[i].v];
q.push(mp(dis[e[i].v],e[i].v));
}
}
printf("%.10lf\n",dis[1]);
return 0;
}
[CERC2017]Gambling Guide的更多相关文章
- [BZOJ5197] [CERC2017]Gambling Guide
[BZOJ5197] [CERC2017]Gambling Guide 题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=5197 Solut ...
- BZOJ5197:[CERC2017]Gambling Guide(最短路,期望DP)
Description 给定一张n个点,m条双向边的无向图. 你要从1号点走到n号点.当你位于x点时,你需要花1元钱,等概率随机地买到与x相邻的一个点的票,只有通过票才能走到其它点. 每当完成一次交易 ...
- Luogu4745/Gym101620G CERC2017 Gambling Guide 期望、DP、最短路
传送门--Luogu 传送门--Vjudge 设\(f_x\)为从\(x\)走到\(N\)的期望步数 如果没有可以不动的限制,就是隔壁HNOI2013 游走 如果有可以不动的限制,那么\(f_x = ...
- 【bzoj5197】[CERC2017]Gambling Guide 期望dp+堆优化Dijkstra
题目描述 给定一张n个点,m条双向边的无向图. 你要从1号点走到n号点.当你位于x点时,你需要花1元钱,等概率随机地买到与x相邻的一个点的票,只有通过票才能走到其它点. 每当完成一次交易时,你可以选择 ...
- CERC2017 Gambling Guide,最短路变形,期望dp
题意 给定一个无向图,你需要从1点出发到达n点,你在每一点的时候,使用1个单位的代价,随机得到相邻点的票,但是你可以选择留在原地,也可以选择使用掉这张票,问到达n点的最小代价的方案的期望是多少. 分析 ...
- 【BZOJ5197】Gambling Guide (最短路,期望)
[BZOJ5197]Gambling Guide (最短路,期望) 题面 BZOJ权限题 洛谷 题解 假设我们求出了每个点的期望,那么对于一个点,只有向期望更小的点移动的时候才会更新答案. 即转移是: ...
- 2017-2018 ACM-ICPC, Central Europe Regional Contest (CERC 17)
A. Assignment Algorithm 按题意模拟即可. #include<stdio.h> #include<iostream> #include<string ...
- 2017 CERC
2017 CERC Problem A:Assignment Algorithm 题目描述:按照规则安排在飞机上的座位. solution 模拟. 时间复杂度:\(O(nm)\) Problem B: ...
- Beennan的内嵌汇编指导(译)Brennan's Guide to Inline Assembly
注:写在前面,这是一篇翻译文章,本人的英文水平很有限,但内嵌汇编是学习操作系统不可少的知识,本人也常去查看这方面的内容,本文是在做mit的jos实验中的一篇关于内嵌汇编的介绍.关于常用的内嵌汇编(AT ...
随机推荐
- Linux启动过程的内核代码分析
参考上文: http://www.cnblogs.com/long123king/p/3543872.html http://www.cnblogs.com/long123king/p/3545688 ...
- flex 布局,flex-grow 宽度未等比放大问题解决办法
本文转载自:https://blog.csdn.net/sinat_41695090/article/details/79215893 先粘贴上一段代码,flex总体布局 <body> & ...
- 小程序 webview踩坑
很多功能是需要调用wx.confing的 wx.config({ debug: true, // 开启调试模式,调用的所有api的返回值会在客户端alert出来,若要查看传入的参数,可以在pc端打开, ...
- centos_mysql踩坑
1 mysql安装 a: #wget http://dev.mysql.com/get/mysql-community-release-el7-5.noarch.rpm b:rpm -ivh mysq ...
- MySQL数据库(五)—— 用户管理、pymysql模块
用户权限管理.pymysql模块 一.用户管理(权限管理) 在MySQL中自带的mysql数据库中有4个表用于用户管理的 # 优先级从高到低 user > db > tables_priv ...
- 用户态和内核态&操作系统
用户态和内核态 内核态:cpu可以访问内存的所有数据,包括外围设备,例如硬盘,网卡,cpu也可以将自己从一个程序切换到另一个程序. 用户态:只能受限的访问内存,且不允许访问外围设备,占用cpu的能力被 ...
- 7-MySQL-Ubuntu-操作数据表的基本操作(二)
修改数据表的结构 (1)向数据表中添加新的字段 alter table 表名 add 字段名 类型及约束; (2)修改字段的属性(字段的数据类型和约束) 注:modify不能修改字段名,只能修改字段 ...
- mybatis的实际应用
简单基本的增删改查语句就不说了,直接从一对一,一对多的关系开始: association联合:联合元素用来处理“一对一”的关系; collection聚集:聚集元素用来处理“一对多”的关系; MyBa ...
- hdu6311 /// 欧拉路径 无向图最小路径覆盖 输出正反路径
题目大意: 给定n m 为图的点数和边数 接下来m行 u v 为u到v有一条边 要求最少几笔能画完图的所有边 输出每笔画过的路径编号 正数编号正向 负数编号反向 题解:https://www.cnbl ...
- windows 和 linux 多线程
学习了几天多线程技术,做个总结,便于记忆. 一般 多线程传递参数 为 void* 所以会有一个强制转换过程 (int*) (void *)等,传递多个参数选择 结构体指针.为了避免多个线程访问数据 ...