np.c_与np.r_
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
import numpy as np def test():
'''
numpy函数np.c_和np.r_学习使用
'''
data_list1=[4,6,12,6,0,3,7]
data_list2=[1,5,2,65,6,7,3]
data_list3=[1,5,2,65,6]
print u'np.r_ data_list1和data_list2合并'
print np.r_[data_list1,data_list2]
print u'np.r_ data_list1和data_list3合并'
print np.r_[data_list1,data_list3] print u'np.c_ data_list1和data_list2合并'
print np.c_[data_list1,data_list2]
print u'np.c_ data_list1和data_list3合并'
print np.c_[data_list1,data_list3] if __name__=='__main__':
其中,data_list1:1行7列,data_list2:1行7列,data_list1:1行5列,
结果如下
np.r_ data_list1和data_list2合并
[ 4 6 12 6 0 3 7 1 5 2 65 6 7 3]
np.r_ data_list1和data_list3合并
[ 4 6 12 6 0 3 7 1 5 2 65 6]
np.c_ data_list1和data_list2合并
[[ 4 1]
[ 6 5]
[12 2]
[ 6 65]
[ 0 6]
[ 3 7]
[ 7 3]]
np.c_ data_list1和data_list3合并
ValueError: all the input array dimensions except for the concatenation axis must match exactly
[Finished in 0.2s with exit code 1]
简单地总结一下用法就是:
np.r_是按行连接两个矩阵,就是把两矩阵上下相加,要求列数相等。
np.c_是按列连接两个矩阵,就是把两矩阵左右相加,要求行数相等。
np.r 要求行数相等,连接两个矩阵,矩阵连接(append),直接把b放到a的后面
np.c 要求列数相等,b的第一行连接到a的第一行后面,b的第二行连接到a的第二行后面,以此类推



np.c_与np.r_的更多相关文章
- numpy中np.c_和np.r_
np.r_:按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等,类似于pandas中的concat() np.c_:按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等,类似于pandas中的mer ...
- Python使用np.c_和np.r_实现数组转换成矩阵
# -*- coding: utf-8 -*-"""Created on Sat Jun 30 14:49:22 2018 @author: zhen"&quo ...
- Python Numpy模块函数np.c_和np.r_
np.r_:是按列连接两个矩阵,就是把两矩阵上下相加,要求列数相等,类似于pandas中的concat(). np.c_:是按行连接两个矩阵,就是把两矩阵左右相加,要求行数相等,类似于pandas中的 ...
- np.r_、np.c_、np.concatenate和np.append
np.r_是按行连接两个矩阵,就是把两矩阵上下相加,要求列数相等,最终结果的行数为两个矩阵行数和. np.c_是按列连接两个矩阵,就是把两矩阵左右相加,要求行数相等,最终结果的列数等于两矩阵的列数和. ...
- 深度学习原理与框架-神经网络-线性回归与神经网络的效果对比 1.np.c_[将数据进行合并] 2.np.linspace(将数据拆成n等分) 3.np.meshgrid(将一维数据表示为二维的维度) 4.plt.contourf(画出等高线图,画算法边界)
1. np.c[a, b] 将列表或者数据进行合并,我们也可以使用np.concatenate 参数说明:a和b表示输入的列表数据 2.np.linspace(0, 1, N) # 将0和1之间的数 ...
- scikit-learn工具学习 - random,mgrid,np.r_ ,np.c_, scatter, axis, pcolormesh, contour, decision_function
yuanwen: http://blog.csdn.net/crossky_jing/article/details/49466127 scikit-learn 练习题 题目:Try classify ...
- 关于meshgrid和numpy.c_以及numpy.r_
meshgrid的目的是生成两套行列数一致的矩阵,其中一个是行重复,一个是列复制:可以这么来理解,通过ravel()将矩阵数据拉平之后,就可以将这两套矩阵累加在一起,形成一个两行数据,要达到这个效果是 ...
- p,np,npc,np难问题,确定图灵机与非确定图灵机
本文转自豆瓣_燃烧的影子 图灵机与可计算性 图灵(1912~1954)出生于英国伦敦,19岁进入剑桥皇家学院研究量子力学和数理逻辑.1935年,图灵写出了"论高斯误差函数"的论文, ...
- np.tile 和np.newaxis
output array([[ 0.24747071, -0.43886742], [-0.03916734, -0.70580089], [ 0.00462337, -0.5143158 ...
随机推荐
- Yarn报错:Could not find any valid local directory for nmPrivate/
原因: yarn.nodemanager.local-dirs和hadoop的hadoop.tmp.dir参数对应文件位置不一致 解决办法: 将hdfs-site.xml中hadoop.tmp.dir ...
- mybatis - 基于拦截器修改执行语句中的ResultMap映射关系
拦截器介绍 mybatis提供了@Intercepts注解允许开发者对mybatis的执行器Executor进行拦截. Executor接口方法主要有update.query.commit.rollb ...
- Python获取时间范围
import datetime def dateRange(beginDate, endDate): dates = [] dt = datetime.datetime.strptime(beginD ...
- archlinux install.txt
++++++ 注意事项+++ +++++++++++++++++++++++++++ 强烈建议新手移步 Arch Wiki > 新手指南 经验者请参阅 Arch Wiki > 安装指南 若 ...
- windows 环境变量%SystemDrive%和%SystemRoot%、%AppData%、%LocalAppData%、%TEMP% 等简写
windows 环境变量%SystemDrive% 和%SystemRoot%.%AppData%.%LocalAppData%.%TEMP% 等简写 假设操作系统安装在 C: 盘 %SYSTEMRO ...
- 微信小程序期末复习
过什么六一,复习不完了... 第1章作业 一.单选题(共10题,100.0分) 1以下哪个不是主流的手机操作系统? A.Android B.iOS C.Windows Phone D.Blackber ...
- 多个iframe,删除详情页时刷新同级iframe的table list
说明:在使用iframe开发时,经常遇到多个iframe之间的操作. 下面就是一个需求:在一个iframe中关闭时,刷新指定的iframe: 添加需要刷新的标识reload=true //添加npi2 ...
- c++踩坑大法好 typedef和模板
1,typedef字面意思,自定义一种数据类型 语法:typedef 类型名称 类型标识符; 基本用法: 1) 为基本数据类型定义新的类型名. 2) 为自定义数据类型(结构体.公用体和枚举类型)定义简 ...
- [NOI2014] 魔法森林 - Link Cut Tree
[NOI2014] 魔法森林 Description 给定一张图,每条边 \(i\) 的权为 \((a_i,b_i)\), 求一条 \(1 \sim n\) 路径,最小化 \(\max_{i\in P ...
- Activiti+Shiro实战
有人曾说:人的差距都在业余时间拉开的……嗯,我现在深刻理解着这句话,作为一个程序员,技术男,就得不断学习新的技术,跟上时代步伐,才会让自己更有价值~~~~以下这个项目是个人利用业余时间学习并实践的~如 ...