MT【275】拉格朗日中值定理
已知$0<x_1<c<x_2<e^{\frac{3}{2}},$且$\dfrac{1-ln(c)}{c^2} = \dfrac{x_1ln(x_2)-x_2ln(x_1)}{x_1x_2(x_2-x_1)}$,
证明:$c^2<x_1x_2$
由题意,结合拉格朗日中值定理知:$f^{'}(c)=\dfrac{x_1ln(x_2)-x_2ln(x_1)}{x_1x_2(x_2-x_1)}$,其中$f(x)=\dfrac{\ln x}{x}$
$\because f^{''}(x)=\dfrac{2\ln x-3}{x^3}<0\therefore f^{'}(x)$单调递减.要证明$c^2<x_1x_2$只需证明:$f^{'}(c)>f^{'}(\sqrt{x_1x_2})$
即证明:$\dfrac{x_1ln(x_2)-x_2ln(x_1)}{x_1x_2(x_2-x_1)}>\dfrac{1-\ln\sqrt{x_1x_2}}{x_1x_2}$化简得
$(x_1+x_2)\ln(x_2)-(x_1+x_2)\ln(x_1)>2(x_2-x_1)$,令$t=\dfrac{x_2}{x_1}>1$,即证:$\ln t>\dfrac{2(t-1)}{t+1}$易知成立.
MT【275】拉格朗日中值定理的更多相关文章
- 《University Calculus》-chape4-导数的应用-微分中值定理
罗尔定理:如果函数f(x)在[a,b]上连续并且在(a,b)处处可微,并且有f(a) = f(b),则我们必然何以找到一个c∈(a,b),使得f’(c) = 0. 证明:我们从函数f(x)的最大值和最 ...
- MT【286】最佳有理逼近
2017北大优秀中学生夏令营已知$\omega $是整系数方程$x^2+ax+b=0$的一个无理数根, 求证:存在常数$C$,使得对任意互质的正整数$p,q$都有$$|\omega-\dfrac{p} ...
- [数学]高数部分-Part III 中值定理与一元微分学应用
Part III 中值定理与一元微分学应用 回到总目录 Part III 中值定理与一元微分学应用 1. 中值定理 费马定理 罗尔定理 拉格朗日中值定理 柯西中值定理 柯西.拉格朗日.罗尔三者间的关系 ...
- 广义Euler常数
对于区间(a,b)内f''(x)>0 那么在该区间内函数的一阶导数对应切线在该区间内只与f(x)在切点相交 1. f''(x)>0那么可知 f'(x)在该区间内是单调增的 以下图为例,过( ...
- 关于L'Hopital法则
1.首先需要使用 罗尔定理 函数f(x)在闭区间[a,b]连续在开区间(a,b)可微,如果f(a)=f(b),那么至少存在一点c使函数导数f'(c)=0 注意需要再(a,b)可微,如果函数有角点,断点 ...
- 完全搞懂傅里叶变换和小波(1)——总纲<转载>
无论是学习信号处理,还是做图像.音视频处理方面的研究,你永远避不开的一个内容,就是傅里叶变换和小波.但是这两个东西其实并不容易弄懂,或者说其实是非常抽象和晦涩的! 完全搞懂傅里叶变换和小波,你至少需要 ...
- state estimation for robotics-1
概率论是探讨SLAM的一个重要的工具,概率密度函数的概率意义在于它能够描述一个随机变量位于任意区间的概率. p(x<=x<=x+dx)≍p(x).dx(由拉格朗日中值定理)
- 【BZOJ5020】[LOJ2289]【THUWC2017】在美妙的数学王国中畅游 - LCT+泰勒展开
咕咕咕?咕咕咕! 题意: Description 数字和数学规律主宰着这个世界. 机器的运转, 生命的消长, 宇宙的进程, 这些神秘而又美妙的过程无不可以用数学的语言展现出来. 这印证了一句古老的名言 ...
- polynomial&generating function学习笔记
生成函数 多项式 形如$\sum_{i=0}^{n}a_i x^i$的代数式称为n阶多项式 核函数 {ai}的核函数为f(x),它的生成函数为sigma(ai*f(i)*x^i) 生成函数的加减 {a ...
随机推荐
- H5 15-交集选择器
15-交集选择器 我是段落 我是段落 我是段落 我是段落 我是段落 <!DOCTYPE html> <html lang="en"> <head> ...
- openstack-KVM安装与使用
一.KVM安装 1.安装条件 VT-x BIOS Intel9R) Virtualization Tech [Enabled] cat /proc/cpuinfo | grep -e vmx -e n ...
- echarts使用笔记四:双Y轴
1.双Y轴显示数量和占比 app.title = '坐标轴刻度与标签对齐'; option = { title : { //标题 x : 'center', y : 5, text : '数量和占比图 ...
- Vmware的虚拟机示例进入BIOS方法
虚拟机(Vmware)怎么进入BIOS_百度经验 https://jingyan.baidu.com/article/7e440953e566472fc0e2eff7.html Vmware虚拟机进入 ...
- mybatis二级缓存详解
1 二级缓存简介 二级缓存是在多个SqlSession在同一个Mapper文件中共享的缓存,它是Mapper级别的,其作用域是Mapper文件中的namespace,默认是不开启的.看如下图: 1. ...
- Eclipse的智能提示的设置
智能提示修改方式是: Windows——>Preferences——>Java-->Editor-->Content Asist,在Auto activation trigge ...
- 剑指offer(15)
题目: 定义栈的数据结构,请在该类型中实现一个能够得到栈中所含最小元素的min函数(时间复杂度应为O(1)). 书中的思路: 按照这个思路我们很容易写出以下代码: import java.util.S ...
- GitHub & OAuth 2.0 & JWT
GitHub & OAuth 2.0 & JWT https://www.rfcreader.com/#rfc6749 GitHub & OAuth https://www.b ...
- 生成统计数据并导出Excel
需求:看如下表格的统计需求 生产调度中心部门需要从IT技术部门得到这些统计数据 步骤: (1)获取所有的子公司列表 (2)遍历所有的子公司,获取每个子公司的库存信息 (3)遍历所有的库存信息,并对库存 ...
- 二、K8S镜像问题
根据前面错误信息来看我们需要下载的镜像.就当前来说,用户 mirrorgooglecontainers 在 docker hub 同步了所有 k8s 最新的镜像,先从这儿下载,然后修改 tag 即可. ...