<题目链接>

<转载于 >>>  >

题目大意:

在二维平面上给出n条不共线的线段(线段端点是整数),问这些线段总共覆盖到了多少个整数点。

解题分析:

用GCD可求的某条给定线段上有多少个整数点,理由如下:

GCD(n,m)为n与m的最大公约数,通过辗转相除法求得。令g=GCD(n,m); n=x*g, m=y*g.所以将横坐标分为g个x份,将纵坐标分为g个y份。所以,本题线段覆盖的整数点个数为 g+1 (因为包含端点,如果不包含端点就为 g-1 )。

但是这样求的的覆盖点数是包含重复点数的,所以我们可以对每条线段再遍历一次,求的它与它之后线段的不重复交点个数,然后用总的交点个数减去这些重复计算的交点,就是答案了。

 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<vector>
#include<queue>
#include<set>
#include<map>
using namespace std;
#define eps 1e-6
#define For(i,a,b) for(int i=a;i<=b;i++)
#define Fore(i,a,b) for(int i=a;i>=b;i--)
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define mkp make_pair
#define pb push_back
#define sz size()
#define met(a,b) memset(a,b,sizeof(a))
#define iossy ios::sync_with_stdio(false);cin.tie(0);cout.tie(0) //提高cin、cout的效率
#define fr freopen
#define pi acos(-1.0)
#define Vector Point
typedef pair<int,int> pii;
const long long linf=1LL<<;
const int iinf=<<;
const double dinf=1e17;
const int Mod=1e9+;
typedef long long ll;
typedef long double ld;
const int maxn=;
int n;
struct Point{
ll x,y;
int id;
Point(ll x=,ll y=):x(x),y(y) {}
Point operator - (const Point &a)const { return Point(x-a.x,y-a.y);}
bool operator == (const Point &a)const { return x==a.x && y==a.y; }
}; ll gcd(ll a,ll b){
while(b>){
ll t=b;b=a%b;a=t;
}
return a;
} ll Cross(Vector a,Vector b){ //向量叉乘
return a.x*b.y-a.y*b.x;
}
ll Dot(Vector a,Vector b) { //向量相乘
return a.x*b.x+a.y*b.y;
}
bool onsg(Point p,Point a1,Point a2){ //判断点p是否在a1,a2组成的线段上
return Cross(a1-p,a2-p)== && Dot(a1-p,a2-p)<;
//共线且反向
}
void ck(ll &c){
if(c>) c=;
else if(c<) c=-;
}
int Ins(Point a1,Point a2,Point b1,Point b2){ //判断两个线段是否有交点
if(a1==b1 || a1==b2 || a2==b1 || a2==b2) return ; //如果有端点相等,那么线段必然有交点
if(onsg(a1,b1,b2) || onsg(a2,b1,b2) || onsg(b1,a1,a2) || onsg(b2,a1,a2)) return ; //如果有端点在另一条线段上,那么这两条线段必然有交点 ll c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1); //用c1*c2<0来判断b1,b2是否在a1~a2线段的两边 ll c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1); //用c3*c4<0来判断a1,a2是否在b1~b2线段的两边
ck(c1);ck(c2);ck(c3);ck(c4);
return c1*c2< && c3*c4<;
} set<pair<ll,ll> >c;
void chk(Point p,Vector v,Point q,Vector w){ //找到两条线段的交点坐标
Vector u=p-q;
ll v1=Cross(w,u),v2=Cross(v,w);
if(abs(v1*v.x)%v2!= || abs(v1*v.y)%v2!=) return ;
ll xx,yy;
xx=p.x+v.x*v1/v2;yy=p.y+v.y*v1/v2;
c.insert(mkp(xx,yy));
} struct segm{
Point p1,p2;
}; segm ss[maxn];
Point p1,p2;
void solve(){
iossy;
cin>>n;
int ans=;
For(i,,n){
cin>>p1.x>>p1.y>>p2.x>>p2.y;
ss[i].p1=p1;ss[i].p2=p2;
ans+=gcd(abs(ss[i].p2.x-ss[i].p1.x),abs(ss[i].p2.y-ss[i].p1.y))+; //此处也可以直接用 __gcd()函数
}//利用gcd找出所有线段所能覆盖的整数点的总数 For(i,,n){
c.clear(); //每次清空set
For(j,i+,n){
int ct=Ins(ss[i].p1,ss[i].p2,ss[j].p1,ss[j].p2);
if(ct) chk(ss[i].p1,ss[i].p2-ss[i].p1,ss[j].p1,ss[j].p2-ss[j].p1);
//如果线段i与线段j有交点的话,将线段i与线段i+1~n的所有不重复的整数交点个数找出来
}
ans-=c.sz;
}
cout<<ans<<endl;
} int main(){
solve();
return ;
}

  

2018-09-09

Codeforces 1036E Covered Points (线段覆盖的整点数)【计算几何】的更多相关文章

  1. Codeforces 1036E. Covered Points

    又一次写起了几何.... 特殊处理在于有可能出现多条线段交于一点的情况,每次考虑时,对每条线段与其他所有线段的交点存在一个set里,对每一个set,每次删除set.size()即可 重点在于判断两条线 ...

  2. CodeForces 1000C Covered Points Count(区间线段覆盖问题,差分)

    https://codeforces.com/problemset/problem/1000/C 题意: 有n个线段,覆盖[li,ri],最后依次输出覆盖层数为1~n的点的个数. 思路: 区间线段覆盖 ...

  3. codeforces 1000C - Covered Points Count 【差分】

    题目:戳这里 题意:给出n个线段,问被1~n个线段覆盖的点分别有多少. 解题思路: 这题很容易想到排序后维护每个端点被覆盖的线段数,关键是端点值不好处理.比较好的做法是用差分的思想,把闭区间的线段改为 ...

  4. C - Covered Points Count CodeForces - 1000C (差分,离散化,统计)

    C - Covered Points Count CodeForces - 1000C You are given nn segments on a coordinate line; each end ...

  5. EDU 50 E. Covered Points 利用克莱姆法则计算线段交点

    E. Covered Points 利用克莱姆法则计算线段交点.n^2枚举,最后把个数开方,从ans中减去. ans加上每个线段的定点数, 定点数用gcs(△x , △y)+1计算. #include ...

  6. Educational Codeforces Round 46 C - Covered Points Count

    C - Covered Points Count emmm 好像是先离散化一下 注意 R需要+1 这样可以确定端点 emmm 扫描线?瞎搞一下? #include<bits/stdc++.h&g ...

  7. Covered Points Count CF1000C 思维 前缀和 贪心

     Covered Points Count time limit per test 3 seconds memory limit per test 256 megabytes input standa ...

  8. CODEVS3037 线段覆盖 5[序列DP 二分]

    3037 线段覆盖 5   时间限制: 3 s   空间限制: 256000 KB   题目等级 : 钻石 Diamond 题解       题目描述 Description 数轴上有n条线段,线段的 ...

  9. CODEVS1643 线段覆盖3[贪心]

    1643 线段覆盖 3   时间限制: 2 s   空间限制: 256000 KB   题目等级 : 黄金 Gold 题解       题目描述 Description 在一个数轴上有n条线段,现要选 ...

随机推荐

  1. oracle数据库内存调整之增加内存

    注:本文来源:小颜Kevin   <oracle数据库内存调整之增加内存> 模拟操作系统内存从2G增加为8G后,调整数据库内存参数,示例中参数不作为实际生产环境参考,因为因需所取,调整参数 ...

  2. Confluence 6 诊断

    当你对性能进行诊断或者希望知道是什么原因导致 Confluence 崩溃,你希望知道在 Confluence 内部是什么导致这些问题发生的.这个时候系统的诊断信息能够帮助你获得更多的有关的这些信息. ...

  3. Java的家庭记账本程序(A)

    日期:2019.2.1 博客期:028 星期五 其实我早就开始开发“家庭记账本”的软件了,只不过写博客写的有点晚,我是打算先做web的!因为Android Studio的教程,还是要对应版本,好多问题 ...

  4. Python基础之常用模块

    一.time模块 1.时间表达形式: 在Python中,通常有这三种方式来表示时间:时间戳.元组(struct_time).格式化的时间字符串: 1.1.时间戳(timestamp) :通常来说,时间 ...

  5. 常用的Eclipse 快捷键

    显示所有快捷方式 SHIFT + CTRL + L 代码类 ALT + / 代码补全 ALT + 1 批量修改变量名 SHIFT + CTRL + F 自动格式代码4 SHIFT + ALT + R ...

  6. Client-Side Attacks

    1.之前看到中间人攻击方式,要使用ssl服务构架一个劫持会话,使得攻击者和被攻击者客户端连接.ssl 服务(secure Socket Layer安全套接) ,以及后续出现的TSL(Transport ...

  7. Workbench热水泵系统

    1.创建一个新的项目,首先新建一个station,打开platform(链接配置,端口设置,账户设置) 新建文件夹之后模板的选取从palette中选择. 第一步新建station,键入station名 ...

  8. Python元组与列表的区别

    列表类似于我们用铅笔在纸上写字,写错了还可以擦掉:而元组则类似于用钢笔写字,写错了就擦不掉了,除非换张纸重写. 列表和元组的区别主要体现在一下几个方面: 列表属于可变序列,他的元素可以随时修改或删除: ...

  9. C++ shut down a computer

    前阵子有朋友问我,怎么用C语言写一个小程序,控制电脑关机.这个我真的不懂,这几天闲着,就上网搜了搜,整理一下. IDE: Code::Blocks 16.01 操作系统:Windows 7 x64 # ...

  10. jquery checkbox勾选/取消勾选只能操作一次的诡异问题

    第一次执行,没问题,但第二次执行就有问题了,选择不了 解决办法:把attr()换成prop() $("#CheckedAll").click(function () { if ($ ...