<题目链接>

题目大意:

给你一些点的坐标,要求你将这些点全部连起来,但是必须要包含某一条特殊的边,问你连起这些点的总最短距离是多少。

解题分析:

因为一定要包含那条边,我们就记录下那条边的边权,然后将那条边边权置为0,再跑一遍最小生成树即可。

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std; int n,s,e,cnt;
struct NODE{
int x,y;
}node[];
int father[];
struct EDGE{
int x,y;
double val;
}edge[*]; bool cmp(EDGE a,EDGE b){
return a.val<b.val;
}
double dis(NODE a,NODE b){
return (double)sqrt((a.x-b.x)*(a.x-b.x)*1.0+(a.y-b.y)*(a.y-b.y)*1.0);
}
int find(int x){
if(father[x]==x)return x;
father[x]=find(father[x]);
return father[x];
}
double Kruscal(){
double sum=;
int num=;
for(int i=;i<=n;i++)father[i]=i;
sort(edge+,edge++cnt,cmp);
for(int i=;i<=cnt;i++){
int f1=find(edge[i].x),f2=find(edge[i].y);
if(f1!=f2){
father[f2]=f1;
sum+=edge[i].val;
num++;
}
if(num==n-)break;
}
return sum;
}
int main(){
while(scanf("%d",&n)!=EOF,n){
scanf("%d%d",&s,&e);
for(int i=;i<=n;i++){
scanf("%d%d",&node[i].x,&node[i].y);
}
double ans=;
cnt=;
for(int i=;i<n;i++){
for(int j=i+;j<=n;j++){
edge[++cnt].x=i,edge[cnt].y=j,edge[cnt].val=dis(node[i],node[j]);
if(i==s&&j==e||i==e&&j==s){
ans+=edge[cnt].val; //记录下这条边的边权。然后将这条边边权置为0
edge[cnt].val=;
}
}
}
ans+=Kruscal(); //跑一遍最小生成树
printf("%.2lf\n",ans);
}
return ;
}

2018-10-07

HDU 4463 Outlets 【最小生成树】的更多相关文章

  1. HDU—4463 Outlets 最小生成树

    In China, foreign brand commodities are often much more expensive than abroad. The main reason is th ...

  2. hdu 4463 Outlets(最小生成树)

    Outlets Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submi ...

  3. 【HDU 4463 Outlets】最小生成树(prim,kruscal都可)

    以(x,y)坐标的形式给出n个点,修建若干条路使得所有点连通(其中有两个给出的特殊点必须相邻),求所有路的总长度的最小值. 因对所修的路的形状没有限制,所以可看成带权无向完全图,边权值为两点间距离.因 ...

  4. HDU 4463 Outlets(最小生成树给坐标)

    Problem Description In China, foreign brand commodities are often much more expensive than abroad. T ...

  5. HDU 4463 Outlets (最小生成树)

    题意:给定n个点坐标,并且两个点已经连接,但是其他的都没有连接,但是要找出一条最短的路走过所有的点,并且路线最短. 析:这个想仔细想想,就是应该是最小生成树,把所有两点都可以连接的当作边,然后按最小生 ...

  6. hdu 4463 Outlets(最小生成树)

    题意:n个点修路,要求总长度最小,但是有两个点p.q必须相连 思路:完全图,prim算法的效率取决于节点数,适用于稠密图.用prim求解. p.q间距离设为0即可,最后输出时加上p.q间的距离 pri ...

  7. hdu 4463 Outlets

    #include<bits/stdc++.h> using namespace std; double x[100+5],y[100+5]; double e[100+5][100+5]; ...

  8. hdu Constructing Roads (最小生成树)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1102 /************************************************* ...

  9. hdu 4463 第37届ACM/ICPC杭州赛区K题 最小生成树

    题意:给坐标系上的一些点,其中有两个点已经连了一条边,求最小生成树的值 将已连接的两点权值置为0,这样一定能加入最小生成树里 最后的结果加上这两点的距离即为所求 #include<cstdio& ...

随机推荐

  1. mvn tomcat7:help的14个命令

    D:\2018\code\XXX>mvn tomcat7:help [INFO] Scanning for projects... [INFO] [INFO] ----------------- ...

  2. Linux下Oracle 12c的卸载

    注:本文来源于:<Linux下Oracle 12c的卸载> 与Windows下Oracle的安装容易卸载麻烦相反,Linux下Oracle的安装麻烦下载简单. 1.关闭Oracle数据库 ...

  3. Linux超级守护进程——xinetd

    一 Linux守护进程 Linux 服务器在启动时需要启动很多系统服务,它们向本地和网络用户提供了Linux的系统功能接口,直接面向应用程序和用户.提供这些服务的程序是由运行在后台的守护进程来执行的. ...

  4. Android UiAutomator 快速调试

    背景:在Eclipse中不能直接运行Uiautomator工程,所以每次编写一份用例都要进行手动输入命令,很烦.调试起来不仅繁琐还浪费时间.网上找到一份快速调试的代码UiAutomatorHelper ...

  5. Metasploit (二)

    1.测试一台搭建的主机 msf > db_nmap -n -A 10.140.110.16[*] Nmap: Starting Nmap 7.60 ( https://nmap.org ) at ...

  6. 课外知识----base64加密

    每3个字符产生4位的base64字符,不足3个字符,将用“=”补齐至4位base64字符 例如 00--->  MDA= 000--->MDAw base64加密特点 加密后的字符数是4的 ...

  7. 在vue项目中使用axios发送FormData

    这个是axios的中文文档,挺详细的: https://www.kancloud.cn/luponu/axios/873153 文档中的    使用 application/x-www-form-ur ...

  8. MySQL5.7.20安装过程报错CMake Error at cmake/boost.cmake:81 (MESSAGE):

    MySQL在5.7版本及以后,都需要boots 库,所以需要先安装boots 步骤: 1.在/usr/local下创建 名为boots的目录 mkdir -p /usr/local/boots 2.进 ...

  9. js 打开摄像头方法 (定制摄像头)

    var video = document.getElementById("video");if (navigator.mediaDevices && navigat ...

  10. webpack+vue打包之后输出配置文件修改接口文件

    用vue-cli构建的项目通常是采用前后端分离的开发模式,也就是前端与后台完全分离,此时就需要将后台接口地址打包进项目中,but,难道我们只是改个接口地址也要重新打包吗?当然不行了,那就太麻烦了,怎么 ...