Tesseract-OCR 字符识别---样本训练 [转]
Tesseract是一个开源的OCR(Optical Character Recognition,光学字符识别)引擎,可以识别多种格式的图像文件并将其转换成文本,目前已支持60多种语言(包括中文)。 Tesseract最初由HP公司开发,后来由Google维护,目前发布在Googel Project上。地址为http://code.google.com/p/tesseract-ocr/。
使用默认的语言库识别
1.安装Tesseract

3. 打开命令行,定位到Tesseract-OCR目录,输入命令:
- tesseract.exe number.jpg result -l eng
tesseract.exe number.jpg result -l eng
其中result表示输出结果文件txt名称,eng表示用以识别的语言文件为英文。
3. 打开Tesseract-OCR目录下的result.txt文件,看到识别的结果为7542315857,有3个字符识别错误,识别率还不是很高,那有没有什么方法来提供识别率呢?Tesseract提供了一套训练样本的方法,用以生成自己所需的识别语言库。下面介绍一下具体训练样本的方法。

训练样本
1.下载工具jTessBoxEditor. http://sourceforge.net/projects/vietocr/files/jTessBoxEditor/,这个工具是用来训练样本用的,由于该工具是用JAVA开发的,需要安装JAVA虚拟机才能运行。
2. 获取样本图像。用画图工具绘制了5张0-9的文样本图像(当然样本越多越好),如下图所示:





3.合并样本图像。运行jTessBoxEditor工具,在点击菜单栏中Tools--->Merge
TIFF。在弹出的对话框中选择样本图像(按Shift选择多张),合并成num.font.exp0.tif文件。4.生成Box File文件。打开命令行,执行命令:
- tesseract.exe num.font.exp0.tif num.font.exp0 batch.nochop makebox
tesseract.exe num.font.exp0.tif num.font.exp0 batch.nochop makebox
生成的BOX文件为num.font.exp0.box,BOX文件为Tessercat识别出的文字和其坐标。
注:Make Box File的命令格式为:
- tesseract [lang].[fontname].exp[num].tif [lang].[fontname].exp[num] batch.nochop makebox
tesseract [lang].[fontname].exp[num].tif [lang].[fontname].exp[num] batch.nochop makebox
其中lang为语言名称,fontname为字体名称,num为序号,可以随便定义。
5.文字校正。运行jTessBoxEditor工具,打开num.font.exp0.tif文件(必须将上一步生成的.box和.tif样本文件放在同一目录),如下图所示。可以看出有些字符识别的不正确,可以通过该工具手动对每张图片中识别错误的字符进行校正。校正完成后保存即可。

6.定义字体特征文件。Tesseract-OCR3.01以上的版本在训练之前需要创建一个名称为font_properties的字体特征文件。
font_properties不含有BOM头,文件内容格式如下:
- <fontname> <italic> <bold> <fixed> <serif> <fraktur>
<fontname> <italic> <bold> <fixed> <serif> <fraktur>
其中fontname为字体名称,必须与[lang].[fontname].exp[num].box中的名称保持一致。<italic> 、<bold> 、<fixed> 、<serif>、 <fraktur>的取值为1或0,表示字体是否具有这些属性。
这里在样本图片所在目录下创建一个名称为font_properties的文件,用记事本打开,输入以下下内容:
- font 0 0 0 0 0
font 0 0 0 0 0
这里全取值为0,表示字体不是粗体、斜体等等。 7.生成语言文件。在样本图片所在目录下创建一个批处理文件,输入如下内容。
- rem 执行改批处理前先要目录下创建font_properties文件
- echo Run Tesseract for Training..
- tesseract.exe num.font.exp0.tif num.font.exp0 nobatch box.train
- echo Compute the Character Set..
- unicharset_extractor.exe num.font.exp0.box
- mftraining -F font_properties -U unicharset -O num.unicharset num.font.exp0.tr
- echo Clustering..
- cntraining.exe num.font.exp0.tr
- echo Rename Files..
- rename normproto num.normproto
- rename inttemp num.inttemp
- rename pffmtable num.pffmtable
- rename shapetable num.shapetable
- echo Create Tessdata..
- combine_tessdata.exe num.
rem 执行改批处理前先要目录下创建font_properties文件 echo Run Tesseract for Training..
tesseract.exe num.font.exp0.tif num.font.exp0 nobatch box.train echo Compute the Character Set..
unicharset_extractor.exe num.font.exp0.box
mftraining -F font_properties -U unicharset -O num.unicharset num.font.exp0.tr echo Clustering..
cntraining.exe num.font.exp0.tr echo Rename Files..
rename normproto num.normproto
rename inttemp num.inttemp
rename pffmtable num.pffmtable
rename shapetable num.shapetable echo Create Tessdata..
combine_tessdata.exe num.
将批处理通过命令行执行。执行后的结果如下:

需确认打印结果中的Offset 1、3、4、5、13这些项不是-1。这样,一个新的语言文件就生成了。
num.traineddata便是最终生成的语言文件,将生成的num.traineddata拷贝到Tesseract-OCR-->tessdata目录下。可以用它来进行字符识别了。
使用训练后的语言库识别
用训练后的语言库识别number.jpg文件, 打开命令行,定位到Tesseract-OCR目录,输入命令:
- tesseract.exe number.jpg result -l eng
tesseract.exe number.jpg result -l eng
识别结果如如图所示,可以看到识别率提高了不少。通过自定义训练样本,可以进行图形验证码、车牌号码识别等。感兴趣的朋友可以研究研究。

Tesseract-OCR 字符识别---样本训练 [转]的更多相关文章
- Tesseract-OCR 字符识别---样本训练
Tesseract是一个开源的OCR(Optical Character Recognition,光学字符识别)引擎,可以识别多种格式的图像文件并将其转换成文本,目前已支持60多种语言(包括中文). ...
- 转 Tesseract-OCR 字符识别---样本训练
转自:http://blog.csdn.net/feihu521a/article/details/8433077 Tesseract是一个开源的OCR(Optical Character Recog ...
- tesseract ocr文字识别Android实例程序和训练工具全部源代码
tesseract ocr是一个开源的文字识别引擎,Android系统中也可以使用.可以识别50多种语言,通过自己训练识别库的方式,可以大大提高识别的准确率. 为了节省大家的学习时间,现将自己近期的学 ...
- 应用OpenCV进行OCR字符识别
opencv自带一个字符识别的例子,它的重点不是OCR字符识别,而主要是演示机器学习的应用.它应用的是UCI提供的字符数据(特征数据). DAMILES在网上发布了一个应用OpenCV进行OCR的例子 ...
- 开源图片文字识别引擎——Tesseract OCR
Tessseract为一款开源.免费的OCR引擎,能够支持中文十分难得.虽然其识别效果不是很理想,但是对于要求不高的中小型项目来说,已经足够用了. 文字识别可应用于许多领域,如阅读.翻译.文献资料的检 ...
- jTessBoxEditor工具进行Tesseract3.02.02样本训练
1.背景 前文已经简要介绍tesseract ocr引擎的安装及基本使用,其中提到使用-l eng参数来限定语言库,可以提高识别准确率及识别效率. 本文将针对某个网站的验证码进行样本训练,形成自己的语 ...
- 利用jTessBoxEditor工具进行Tesseract3.02.02样本训练,提高验证码识别率
1.背景 前文已经简要介绍tesseract ocr引擎的安装及基本使用,其中提到使用-l eng参数来限定语言库,可以提高识别准确率及识别效率. 本文将针对某个网站的验证码进行样本训练,形成自己的语 ...
- Tesseract 3.02中文字库训练
Tesseract 3.02中文字库训练 下载chi_sim.traindata字库下载tesseract-ocr-setup-3.02.02.exe 下载jTessBoxEditor用于修改box文 ...
- Tesseract——OCR图像识别 入门篇
Tesseract——OCR图像识别 入门篇 最近给了我一个任务,让我研究图像识别,从我们项目的screenshot中识别文字信息,so我开始了学习,与大家分享下. 我看到目前OCR技术有很多,最主要 ...
随机推荐
- 转载:全球首个微信小程序(应用号)开发教程!通宵吐血赶稿,每日更新!
微信应用号(小程序,「应用号」的新称呼)终于来了! 目前还处于内测阶段,微信只邀请了部分企业参与封测.想必大家都关心应用号的最终形态到底是什么样子?怎样将一个「服务号」改造成为「小程序」? 我们暂时以 ...
- JAVA - 大数类详解
写在前面 对于ACMer来说,java语言最大的优势就是BigInteger,Bigdecimal,String三个类. 这三个类分别是高精度整数,高精度浮点数和字符串,之所以说这个是它的优势是因为j ...
- 常用vs快捷键
Ctrl+E,D ----格式化全部代码 Ctrl+A+K+FCtrl+E,F ----格式化选中的代码 Ctrl+K+FCTRL + SHIFT + B生成解决方案 Alt+B+B 或 F6 生成当 ...
- .NET程序的编译和运行
程序的编译和运行,总得来说大体是:首先写好的程序是源代码,然后编译器编译为本地机器语言,最后在本地操作系统运行. 下图为传统代码编译运行过程: .NET的编译和运行过程与之类似,首先编写好的源代码,然 ...
- Python基础:序列(字符串)
一.概述 字符串 类似于C中的字符数组(功能上更像C++中的string),它是由一个个 字符 组成的序列.与C/C++不同的是,Python中没有 字符 这个类型,而是用 长度为1的字符串 来表示字 ...
- sencha grid templatecolumn模板列,actioncolumn和renderer实现单元格重绘
templatecolumn列: { xtype: 'templatecolumn', ...
- C#开发中可能会用到的一些小贴士(转)
转至http://www.cnblogs.com/Ebony-Ivory/p/4380106.html C#篇: 1.目标平台的选择 64位操作系统在编译VS里的程序时,根据需要设置项目属性的“目标平 ...
- C#的timer类
在C#里关于定时器类就有3个 1.定义在System.Windows.Forms里 2.定义在System.Threading.Timer类里 3.定义在System.Timers.Timer类里 S ...
- NFS客户端访问行为相关的几个参数解释
soft / hard Determines the recovery behavior of the NFS client after an NFS request times out. If ne ...
- 编写运行R脚本
1.在后台运行R 1.1 创建file.R文件 1.2 在文件首行键入: #! /path/to/Rscript 1.3 在下面的行中,键入R代码 1.4 保存(记得有png(),jpeg(),... ...