1.几种缓存数据的方法

例如有一张hive表叫做activity

1.CACHE TABLE

//缓存全表
sqlContext.sql("CACHE TABLE activity") //缓存过滤结果
sqlContext.sql("CACHE TABLE activity_cached as select * from activity where ...")

CACHE TABLE是即时生效(eager)的,如果你想等到一个action操作再缓存数据可以使用CACHE LAZY TABLE,这样操作会直到一个action操作才被触发,例如count(*)

sqlContext.sql("CACHE LAZY TABLE ...")

取消hive表缓存数据

sqlContext.sql("UNCACHE TABLE activity")

2.将dataFrame注册成表并缓存

val df = sqlContext.sql("select * from activity")
df.registerTempTable("activity_cached")
sqlContext.cacheTable("activity_cached") Tip:cacheTable操作是lazy的,需要一个action操作来触发缓存操作。

对应的uncacheTable可以取消缓存

sqlContext.uncacheTable("activity_cached")

3.缓存dataFrame

val df = sqlContext.sql("select * from tableName")
df.cache()

2.缓存结果

缓存时看到如下提示:

Added rdd_xx_x in memory on ...

如果内存不足,则会存入磁盘中,提示如下:

Added rdd_xx_x on disk on ...

缓存数据后可以在Storage上看到缓存的数据

3.一些参数

spark.sql.autoBroadcastJoinThreshold

该参数默认为10M,在进行join等聚合操作时,将小于该值的表broadcast到每台worker,消除了大量的shuffle操作。

spark.rdd.compress true

将rdd存入mem或disk前再进行一次压缩,效果显著,我使用cacheTable了一张表,没有开启该参数前总共cache了54G数据,开启这个参数后只34G,可是执行速度并没有收到太大的影响。

spark.sql.shuffle.partitions

这个参数默认为200,是join等聚合操作的并行度,如果有大量的数据进行操作,造成单个任务比较重,运行时间过长的时候,会报如下的错误:

org.apache.spark.shuffle.FetchFailedException: Connection from /192.168.xx.xxx:53450 closed

这个时候需要提高该值。

spark sql cache的更多相关文章

  1. spark sql cache时发现的空字符串问题

    博客园首发,转帖请注明地址:https://www.cnblogs.com/tzxxh/p/10267202.html 图一 图1未做cache,直接过滤expression列的 null 和空字符串 ...

  2. 第九篇:Spark SQL 源码分析之 In-Memory Columnar Storage源码分析之 cache table

    /** Spark SQL源码分析系列文章*/ Spark SQL 可以将数据缓存到内存中,我们可以见到的通过调用cache table tableName即可将一张表缓存到内存中,来极大的提高查询效 ...

  3. 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL

    周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ...

  4. Spark 官方文档(5)——Spark SQL,DataFrames和Datasets 指南

    Spark版本:1.6.2 概览 Spark SQL用于处理结构化数据,与Spark RDD API不同,它提供更多关于数据结构信息和计算任务运行信息的接口,Spark SQL内部使用这些额外的信息完 ...

  5. Spark SQL 官方文档-中文翻译

    Spark SQL 官方文档-中文翻译 Spark版本:Spark 1.5.2 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 Data ...

  6. Spark SQL 之 Performance Tuning & Distributed SQL Engine

    Spark SQL 之 Performance Tuning & Distributed SQL Engine 转载请注明出处:http://www.cnblogs.com/BYRans/ 缓 ...

  7. Spark源码系列(九)Spark SQL初体验之解析过程详解

    好久没更新博客了,之前学了一些R语言和机器学习的内容,做了一些笔记,之后也会放到博客上面来给大家共享.一个月前就打算更新Spark Sql的内容了,因为一些别的事情耽误了,今天就简单写点,Spark1 ...

  8. Spark SQL利器:cacheTable/uncacheTable

    Spark相对于Hadoop MapReduce有一个很显著的特性就是“迭代计算”(作为一个MapReduce的忠实粉丝,能这样说,大家都懂了吧),这在我们的业务场景里真的是非常有用.   假设我们有 ...

  9. Spark SQL 源代码分析之 In-Memory Columnar Storage 之 in-memory query

    /** Spark SQL源代码分析系列文章*/ 前面讲到了Spark SQL In-Memory Columnar Storage的存储结构是基于列存储的. 那么基于以上存储结构,我们查询cache ...

随机推荐

  1. MessageQueue 一 简单的创建和读取

    创建一个队列,并写入数据 在读取出来 using System; using System.Collections.Generic; using System.Linq; using System.M ...

  2. 《linux内核设计与实现》读书笔记第五章——系统调用

    第5章 系统调用 操作系统提供接口主要是为了保证系统稳定可靠,避免应用程序恣意妄行. 5.1 与内核通信 系统调用在用户空间进程和硬件设备之间添加了一个中间层. 该层主要作用有三个: 为用户空间提供了 ...

  3. Redis学习笔记(7)-事务

    package cn.com; import java.util.List; import redis.clients.jedis.Jedis; import redis.clients.jedis. ...

  4. js跳转方法

    很有用的东西,参考自http://www.zhuoda.org/lunzi/66097.html 第一种 <script language="javascript" type ...

  5. ie下的onscroll和onresize的优化

    ie下的scroll和resize的优化 1.onscroll function scrollEvent(){ //do something... console.log('do something. ...

  6. LeetCode Number of Digit One

    原题链接在这里:https://leetcode.com/problems/number-of-digit-one/ 每10个数, 有一个个位是1, 每100个数, 有10个十位是1, 每1000个数 ...

  7. notepad++代码折叠对应的树形结构快捷键

    树形层次,从1开始计数 <!doctype html> <html lang="en" class="1"> <head clas ...

  8. mysql 恢复

    一.备份的目的 做灾难恢复:对损坏的数据进行恢复和还原需求改变:因需求改变而需要把数据还原到改变以前测试:测试新功能是否可用 二.备份需要考虑的问题 可以容忍丢失多长时间的数据:恢复数据要在多长时间内 ...

  9. MVC项目实践,在三层架构下实现SportsStore-03,Ninject控制器工厂等

    SportsStore是<精通ASP.NET MVC3框架(第三版)>中演示的MVC项目,在该项目中涵盖了MVC的众多方面,包括:使用DI容器.URL优化.导航.分页.购物车.订单.产品管 ...

  10. Java8 新特性default

    在JDK1.8的Iterator接口中 package java.util; import java.util.function.Consumer; public interface Iterator ...