Floyd-Warshall 算法采用动态规划方案来解决在一个有向图 G = (V, E) 上每对顶点间的最短路径问题,即全源最短路径问题(All-Pairs Shortest Paths Problem),其中图 G 允许存在权值为负的边,但不存在权值为负的回路。Floyd-Warshall 算法的运行时间为 Θ(V3)。

Floyd-Warshall 算法由 Robert Floyd 于 1962 年提出,但其实质上与 Bernad Roy 于 1959 年和 Stephen Warshall 于 1962 年提出的算法相同。

解决单源最短路径问题的方案有 Dijkstra 算法和 Bellman-Ford 算法,对于全源最短路径问题可以认为是单源最短路径问题(Single Source Shortest Paths Problem)的推广,即分别以每个顶点作为源顶点并求其至其它顶点的最短距离。更通用的全源最短路径算法包括:

  • 针对稠密图的 Floyd-Warshall 算法:时间复杂度为 O(V3);
  • 针对稀疏图的 Johnson 算法:时间复杂度为 O(V2logV + VE);

最短路径算法中的最优子结构指的是两顶点之间的最短路径包括路径上其它顶点的最短路径。具体描述为:对于给定的带权图 G = (V, E),设 p = <v1, v2, …,vk> 是从 v1 到 vk 的最短路径,那么对于任意 i 和 j,1 ≤ i ≤ j ≤ k,pij = <vi, vi+1, …, vj> 为 p 中顶点 vi 到 vj 的子路径,那么 pij 是顶点 vi 到 vj 的最短路径。

Floyd-Warshall 算法的设计基于了如下观察。设带权图 G = (V, E) 中的所有顶点 V = {1, 2, . . . , n},考虑一个顶点子集 {1, 2, . . . , k}。对于任意对顶点 i, j,考虑从顶点 i 到 j 的所有路径的中间顶点都来自该子集 {1, 2, . . . , k},设 p 是该子集中的最短路径。Floyd-Warshall 算法描述了 p 与 i, j 间最短路径及中间顶点集合 {1, 2, . . . , k - 1} 的关系,该关系依赖于 k 是否是路径 p 上的一个中间顶点。

算法伪码如下:

最短路径算法的设计都使用了松弛(relaxation)技术。在算法开始时只知道图中边的权值,然后随着处理逐渐得到各对顶点的最短路径的信息,算法会逐渐更新这些信息,每步都会检查是否可以找到一条路径比当前已有路径更短,这一过程通常称为松弛(relaxation)。

C# 代码实现:

 using System;
using System.Collections.Generic;
using System.Linq; namespace GraphAlgorithmTesting
{
class Program
{
static void Main(string[] args)
{
int[,] graph = new int[, ]
{
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , },
{, , , , , , , , }
}; Graph g = new Graph(graph.GetLength());
for (int i = ; i < graph.GetLength(); i++)
{
for (int j = ; j < graph.GetLength(); j++)
{
if (graph[i, j] > )
g.AddEdge(i, j, graph[i, j]);
}
} Console.WriteLine("Graph Vertex Count : {0}", g.VertexCount);
Console.WriteLine("Graph Edge Count : {0}", g.EdgeCount);
Console.WriteLine(); int[,] distSet = g.FloydWarshell();
PrintSolution(g, distSet); // build a directed and negative weighted graph
Graph directedGraph1 = new Graph();
directedGraph1.AddEdge(, , -);
directedGraph1.AddEdge(, , );
directedGraph1.AddEdge(, , );
directedGraph1.AddEdge(, , );
directedGraph1.AddEdge(, , );
directedGraph1.AddEdge(, , );
directedGraph1.AddEdge(, , );
directedGraph1.AddEdge(, , -); Console.WriteLine();
Console.WriteLine("Graph Vertex Count : {0}", directedGraph1.VertexCount);
Console.WriteLine("Graph Edge Count : {0}", directedGraph1.EdgeCount);
Console.WriteLine(); int[,] distSet1 = directedGraph1.FloydWarshell();
PrintSolution(directedGraph1, distSet1); // build a directed and positive weighted graph
Graph directedGraph2 = new Graph();
directedGraph2.AddEdge(, , );
directedGraph2.AddEdge(, , );
directedGraph2.AddEdge(, , );
directedGraph2.AddEdge(, , ); Console.WriteLine();
Console.WriteLine("Graph Vertex Count : {0}", directedGraph2.VertexCount);
Console.WriteLine("Graph Edge Count : {0}", directedGraph2.EdgeCount);
Console.WriteLine(); int[,] distSet2 = directedGraph2.FloydWarshell();
PrintSolution(directedGraph2, distSet2); Console.ReadKey();
} private static void PrintSolution(Graph g, int[,] distSet)
{
Console.Write("\t");
for (int i = ; i < g.VertexCount; i++)
{
Console.Write(i + "\t");
}
Console.WriteLine();
Console.Write("\t");
for (int i = ; i < g.VertexCount; i++)
{
Console.Write("-" + "\t");
}
Console.WriteLine();
for (int i = ; i < g.VertexCount; i++)
{
Console.Write(i + "|\t");
for (int j = ; j < g.VertexCount; j++)
{
if (distSet[i, j] == int.MaxValue)
{
Console.Write("INF" + "\t");
}
else
{
Console.Write(distSet[i, j] + "\t");
}
}
Console.WriteLine();
}
} class Edge
{
public Edge(int begin, int end, int weight)
{
this.Begin = begin;
this.End = end;
this.Weight = weight;
} public int Begin { get; private set; }
public int End { get; private set; }
public int Weight { get; private set; } public override string ToString()
{
return string.Format(
"Begin[{0}], End[{1}], Weight[{2}]",
Begin, End, Weight);
}
} class Graph
{
private Dictionary<int, List<Edge>> _adjacentEdges
= new Dictionary<int, List<Edge>>(); public Graph(int vertexCount)
{
this.VertexCount = vertexCount;
} public int VertexCount { get; private set; } public int EdgeCount
{
get
{
return _adjacentEdges.Values.SelectMany(e => e).Count();
}
} public void AddEdge(int begin, int end, int weight)
{
if (!_adjacentEdges.ContainsKey(begin))
{
var edges = new List<Edge>();
_adjacentEdges.Add(begin, edges);
} _adjacentEdges[begin].Add(new Edge(begin, end, weight));
} public int[,] FloydWarshell()
{
/* distSet[,] will be the output matrix that will finally have the shortest
distances between every pair of vertices */
int[,] distSet = new int[VertexCount, VertexCount]; for (int i = ; i < VertexCount; i++)
{
for (int j = ; j < VertexCount; j++)
{
distSet[i, j] = int.MaxValue;
}
}
for (int i = ; i < VertexCount; i++)
{
distSet[i, i] = ;
} /* Initialize the solution matrix same as input graph matrix. Or
we can say the initial values of shortest distances are based
on shortest paths considering no intermediate vertex. */
foreach (var edge in _adjacentEdges.Values.SelectMany(e => e))
{
distSet[edge.Begin, edge.End] = edge.Weight;
} /* Add all vertices one by one to the set of intermediate vertices.
---> Before start of a iteration, we have shortest distances between all
pairs of vertices such that the shortest distances consider only the
vertices in set {0, 1, 2, .. k-1} as intermediate vertices.
---> After the end of a iteration, vertex no. k is added to the set of
intermediate vertices and the set becomes {0, 1, 2, .. k} */
for (int k = ; k < VertexCount; k++)
{
// Pick all vertices as source one by one
for (int i = ; i < VertexCount; i++)
{
// Pick all vertices as destination for the above picked source
for (int j = ; j < VertexCount; j++)
{
// If vertex k is on the shortest path from
// i to j, then update the value of distSet[i,j]
if (distSet[i, k] != int.MaxValue
&& distSet[k, j] != int.MaxValue
&& distSet[i, k] + distSet[k, j] < distSet[i, j])
{
distSet[i, j] = distSet[i, k] + distSet[k, j];
}
}
}
} return distSet;
}
}
}
}

运行结果如下:

参考资料

本篇文章《Floyd-Warshall 全源最短路径算法》由 Dennis Gao 发表自博客园,未经作者本人同意禁止任何形式的转载,任何自动或人为的爬虫转载行为均为耍流氓。

Floyd-Warshall 全源最短路径算法的更多相关文章

  1. Johnson 全源最短路径算法

    解决单源最短路径问题(Single Source Shortest Paths Problem)的算法包括: Dijkstra 单源最短路径算法:时间复杂度为 O(E + VlogV),要求权值非负: ...

  2. Johnson 全源最短路径算法学习笔记

    Johnson 全源最短路径算法学习笔记 如果你希望得到带互动的极简文字体验,请点这里 我们来学习johnson Johnson 算法是一种在边加权有向图中找到所有顶点对之间最短路径的方法.它允许一些 ...

  3. 经典贪心算法(哈夫曼算法,Dijstra单源最短路径算法,最小费用最大流)

    哈夫曼编码与哈夫曼算法 哈弗曼编码的目的是,如何用更短的bit来编码数据. 通过变长编码压缩编码长度.我们知道普通的编码都是定长的,比如常用的ASCII编码,每个字符都是8个bit.但在很多情况下,数 ...

  4. Dijkstra 单源最短路径算法

    Dijkstra 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法,由计算机科学家 Edsger Dijkstra 于 1956 年 ...

  5. Bellman-Ford 单源最短路径算法

    Bellman-Ford 算法是一种用于计算带权有向图中单源最短路径(SSSP:Single-Source Shortest Path)的算法.该算法由 Richard Bellman 和 Leste ...

  6. 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(二)

    一.基于邻接表的Dijkstra算法 如前一篇文章所述,在 Dijkstra 的算法中,维护了两组,一组包含已经包含在最短路径树中的顶点列表,另一组包含尚未包含的顶点.使用邻接表表示,可以使用 BFS ...

  7. 单源最短路径算法:迪杰斯特拉 (Dijkstra) 算法(一)

    一.算法介绍 迪杰斯特拉算法(英语:Dijkstra's algorithm)由荷兰计算机科学家艾兹赫尔·迪杰斯特拉在1956年提出.迪杰斯特拉算法使用了广度优先搜索解决赋权有向图的单源最短路径问题. ...

  8. 多源最短路径算法—Floyd算法

    前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra ...

  9. 多源最短路径算法:Floyd算法

    前言 由于本人太菜,这里不讨论Floyd的正确性. 简介 多源最短路径,解决的是求从图中任意两点之间的最短路径的问题. 分析 代码短小精悍,主要代码只有四行,直接放上: for(int k=1;k&l ...

随机推荐

  1. 我的MYSQL学习心得(一) 简单语法

    我的MYSQL学习心得(一) 简单语法 我的MYSQL学习心得(二) 数据类型宽度 我的MYSQL学习心得(三) 查看字段长度 我的MYSQL学习心得(四) 数据类型 我的MYSQL学习心得(五) 运 ...

  2. C#中那些[举手之劳]的性能优化

    隔了很久没写东西了,主要是最近比较忙,更主要的是最近比较懒...... 其实这篇很早就想写了 工作和生活中经常可以看到一些程序猿,写代码的时候只关注代码的逻辑性,而不考虑运行效率 其实这对大多数程序猿 ...

  3. ExtJS 4.2 组件介绍

    目录 1. 介绍 1.1 说明 1.2 组件分类 1.3 组件名称 1.4 组件结构 2. 组件的创建方式 2.1 Ext.create()创建 2.2 xtype创建 1. 介绍 1.1 说明 Ex ...

  4. CENTOS 6.5 平台离线编译安装 PHP5.6.6

    一.下载php源码包 http://cn2.php.net/get/php-5.6.6.tar.gz/from/this/mirror 二.编译 编译之前可能会缺少一些必要的依赖包,加载一个本地yum ...

  5. SDWebImage源码解读 之 NSData+ImageContentType

    第一篇 前言 从今天开始,我将开启一段源码解读的旅途了.在这里先暂时不透露具体解读的源码到底是哪些?因为也可能随着解读的进行会更改计划.但能够肯定的是,这一系列之中肯定会有Swift版本的代码. 说说 ...

  6. 步入angularjs directive(指令)--准备工作熟悉hasOwnProperty

    在讲解directive之前,先做一下准备工作,为何要这样呢? 因为我们不是简单的说说directive怎么用,还要知道为什么这么用!(今天我们先磨磨刀!). 首先我们讲讲js 基础的知识--hasO ...

  7. 【iOS】Xcode8+Swift3 纯代码模式实现 UICollectionView

    开发环境 macOS Sierra 10.12.Xcode 8.0,如下图所示: 总体思路 1.建立空白的storyboard用于呈现列表 2.实现自定义单个单元格(继承自:UICollectionV ...

  8. H3 BPM产品安装手册(.Net版本)

    1         安装说明 1.1    服务器安装必备软件 在使用该工作流软件之前,有以下一些软件是必须安装: l  IIS7.0以上版本(必须): l  .Net Framework 4.5(必 ...

  9. 当我们在谈论kmeans(1)

    本稿为初稿,后续可能还会修改:如果转载,请务必保留源地址,非常感谢! 博客园:http://www.cnblogs.com/data-miner/ 简书:建设中... 知乎:建设中... 当我们在谈论 ...

  10. [转]NopCommerce How to add a menu item into the administration area from a plugin

    本文转自:http://docs.nopcommerce.com/display/nc/How+to+code+my+own+shipping+rate+computation+method Go t ...