第k大数维护,我推荐Treap。。谁用谁知道。。。。

                                                          Black Box
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 5999   Accepted: 2417

Description

Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions:

ADD (x): put element x into Black Box; 
GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending.

Let us examine a possible sequence of 11 transactions:

Example 1

N Transaction i Black Box contents after transaction Answer 
(elements are arranged by non-descending) 
1 ADD(3) 0 3 
2 GET 1 3 3 
3 ADD(1) 1 1, 3 
4 GET 2 1, 3 3 
5 ADD(-4) 2 -4, 1, 3 
6 ADD(2) 2 -4, 1, 2, 3 
7 ADD(8) 2 -4, 1, 2, 3, 8 
8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8 
9 GET 3 -1000, -4, 1, 2, 3, 8 1 
10 GET 4 -1000, -4, 1, 2, 3, 8 2 
11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8 
It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type.

Let us describe the sequence of transactions by two integer arrays:

1. A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2).

2. u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6).

The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence.

Input

Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.

Output

Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.

Sample Input

7 4
3 1 -4 2 8 -1000 2
1 2 6 6

Sample Output

3
3
1
2

Source

Northeastern Europe 1996

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>

using namespace std;

const int maxNode=444444;
const int INF=0x3f3f3f3f;
int M,N,II,cc;
int arr[33000];
int u[33000];

struct Treap
{
    int root,treapCnt,key[maxNode],priority[maxNode],
    childs[maxNode][2],cnt[maxNode],ssize[maxNode];

Treap()
    {
        root=0;
        treapCnt=1;
        priority[0]=INF;
        ssize[0]=0;
    }

void update(int x)
    {
        ssize[x]=ssize[childs[x][0]]+cnt[x]+ssize[childs[x][1]];
    }

void rotate(int &x,int t)
    {
        int y=childs[x][t];
        childs[x][t]=childs[y][1-t];
        childs[y][1-t]=x;
        update(x);
        update(y);
        x=y;
    }

void _insert(int &x,int k)
    {
        if(x)
        {
            if(key[x]==k)
            {
                cnt[x]++;
            }
            else
            {
                int t=key[x]<k;
                _insert(childs[x][t],k);
                if(priority[childs[x][t]]<priority[x])
                {
                    rotate(x,t);
                }
            }
        }
        else
        {
            x=treapCnt++;
            key[x]=k;
            cnt[x]=1;
            priority[x]=rand();
            childs[x][0]=childs[x][1]=0;
        }
        update(x);
    }

int _getKth(int &x,int k)
    {
        if(k<=ssize[childs[x][0]])
        {
            return _getKth(childs[x][0],k);
        }
        k-=ssize[childs[x][0]]+cnt[x];
        if(k<=0)
        {
            return key[x];
        }
        return _getKth(childs[x][1],k);
    }

void Insert(int k)
    {
        _insert(root,k);
    }

int GetKth(int k)
    {
        return _getKth(root,k);
    }

}T;

int main()
{
    scanf("%d%d",&M,&N);
    II=0;cc=1;
    for(int i=1;i<=M;i++)
    {
        scanf("%d",arr+i);
    }
    for(int i=1;i<=N;i++)
    {
        scanf("%d",u+i);
    }
    for(int i=1;i<=M;i++)
    {
        T.Insert(arr[i]);
        while(i==u[cc])
        {
            cc++;II++;
            printf("%d\n",T.GetKth(II));
        }
    }
    return 0;
}

* This source code was highlighted by YcdoiT. ( style: Codeblocks )

POJ 1442 Black Box的更多相关文章

  1. POJ 1442 Black Box treap求区间第k大

    题目来源:POJ 1442 Black Box 题意:输入xi 输出前xi个数的第i大的数 思路:试了下自己的treap模版 #include <cstdio> #include < ...

  2. POJ 1442 Black Box(优先队列)

    题目地址:POJ 1442 这题是用了两个优先队列,当中一个是较大优先.还有一个是较小优先. 让较大优先的队列保持k个.每次输出较大优先队列的队头. 每次取出一个数之后,都要先进行推断,假设这个数比較 ...

  3. poj 1442 Black Box(堆 优先队列)

    题目:http://poj.org/problem?id=1442 题意:n,m,分别是a数组,u数组的个数,u[i]w为几,就加到a几,然后输出第i 小的 刚开始用了一个小顶堆,超时,后来看了看别人 ...

  4. POJ 1442 Black Box 堆

    题目: http://poj.org/problem?id=1442 开始用二叉排序树写的,TLE了,改成优先队列,过了.. 两个版本都贴一下吧,赚稿费.. #include <stdio.h& ...

  5. poj 1442 Black Box(优先队列&Treap)

    题目链接:http://poj.org/problem?id=1442 思路分析: <1>维护一个最小堆与最大堆,最大堆中存储最小的K个数,其余存储在最小堆中; <2>使用Tr ...

  6. 数据结构(堆):POJ 1442 Black Box

    Black Box Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10658   Accepted: 4390 Descri ...

  7. [ACM] POJ 1442 Black Box (堆,优先队列)

    Black Box Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7099   Accepted: 2888 Descrip ...

  8. POJ 1442 Black Box -优先队列

    优先队列..刚开始用蠢办法,经过一个vector容器中转,这么一来一回这么多趟,肯定超时啊. 超时代码如下: #include <iostream> #include <cstdio ...

  9. 优先队列 || POJ 1442 Black Box

    给n个数,依次按顺序插入,第二行m个数,a[i]=b表示在第b次插入后输出第i小的数 *解法:写两个优先队列,q1里由大到小排,q2由小到大排,保持q2中有i-1个元素,那么第i小的元素就是q2的to ...

随机推荐

  1. 启动图实现:UIScrollView+UIPageControl简单实现

    #import "MJViewController.h"#import "RootViewController.h" @interface MJViewCont ...

  2. Java中的String、StringBuffer以及StringBuilder的用法和区别

    String String的构造方式有n种(据说n==11),常见的例举一二: String s1 = "hello world"; String s2 = new String( ...

  3. 仿照easy-ui并改进的表单验证

    概述 easy-ui有自身的一套表单验证,扩展方便,但默认下也存在一些弱点,比如多规则验证.后台验证.远程异步验证等,这些功能要解决起来是比较吃力的.我仿照它的样式,写了一套前端表单验证的validB ...

  4. js的深度拷贝和浅拷贝

    从extend看浅拷贝和深拷贝 请先查看: http://blog.sina.com.cn/s/blog_912389e5010120n2.html

  5. beta版本项目冲刺

    项目冲刺第一天 项目冲刺第二天 项目冲刺第三天 项目冲刺第四天 项目冲刺第五天 项目冲刺第六天 项目冲刺第七天

  6. 使用nginx绑定域名,代理gitlab

    默认情况下,gitlab通过自带的unicorn来充当web页面的,不用nginx也可以,这里我们使用nginx代理vim /etc/yum.reos.d/nginx.repo # 编辑nginx.r ...

  7. .net架构设计读书笔记--第二章 第7节 神化般的业务层

    一.编排业务逻辑的模式1. 事务脚本模式TS(The Transaction Script pattern ) TS模式概述     TS 鼓励你跳过任何的面向对象的设计,你直接到所需的用户操作的业务 ...

  8. hasSet,TreeSet,ArrayList,LinkedList,Vector,HashMap,HashTable,TreeMap利用Iterator进行输出

    基础类,没有重写hashCode()和equals()方法: package niukewang; import java.util.Objects; public class setClass { ...

  9. 【POJ 2886】Who Gets the Most Candies?

    题意 约瑟夫问题的升级版,每次出去的是前一个出去的人位置+手上的数字(正往前,负往后).第i个出去的人拿的糖是i的约数的个数.求拿糖最多的人和他的糖果数. 分析 线段树单点更新,反素数. 我竟然WA在 ...

  10. 项目跑起来之后,一会儿后台就会报错Illegal access: this web application instance has been stopped already. Could not load [com.mchange.v2.resourcepool.BasicResourcePool$1DestroyResourceTask]. The following stack trace

    一月 24, 2016 6:42:54 下午 org.apache.catalina.loader.WebappClassLoaderBase checkStateForResourceLoading ...