https://mp.weixin.qq.com/s/v8plWCBD8vZkxykjJe4TCg
 
介绍AsyncCrossing的实现,主要介绍如何实现diplomacy Node和LazyModule相关内容。
 
 
1. TLAsyncCrossingSource
 
异步上游节点(源节点):
 
1) node:LazyModule的节点成员
 
node用于与其他diplomacy节点协商参数,在这里是一个异步上游节点:
 
TLAsyncSourceNode是一个适配器节点:
 
其使用实例如下:
 
每一条边在tilelink中是一个link,每条link必然包含a/d两个channel(TL-UL/TL-UH),可能包含b/c/e三条channel(TL-C)。
 
2) LazyModuleImp匿名子类的实例
 
TLAsyncCrossingSource是一个原子节点,其内部没有其他子节点。所以其实现只需要连接好输入边和输出边,实现处理逻辑即可。TLAsyncCrossingSource的处理逻辑是添加异步处理。
 
a. LazyModuleImp的匿名子类
 
花括号中定义的是LazyModuleImp的匿名子类。因为这个类只在这里使用一次,所以没有命名。
 
b. 实例化
 
这里的使用就是直接将其实例化:new LazyModuleImp(this) { ... }
 
3) 节点逻辑的实现
 
a. 取出一对输入输出边
 
适配节点把输入边适配之后,通过输出边输出,所以这里输入边和输出边成对取出:
 
b. 判断是否TL-C,即是否支持channel b/c/e:
 
Acquire/Probe都是处理Permission的Transfer消息,TL-C独有:
 
c. 对必然支持的channel a/d做异步处理
 
- 输入边的channel a(in.a)经过异步处理,输出到输出边的channel a(out.a);
- 输出边的channel d(out.d),经过异步处理,输出到输入边的channel d(in.d);
 
d. 若支持b/c/e,则对其做异步处理
 
根据channel方向的不同,使用ToAsyncBundle/FromAsyncBundle:
 
e. 若不支持b/c/e,则处理成:不打扰对方。
 
 
 
2. TLAsyncCrossingSink
 
 
1) node:LazyModule的节点成员
 
node用于与其他diplomacy节点协商参数,在这里是一个异步上游节点:
TLAsyncSinkNode也是一个适配器节点。
 
2) LazyModuleImp匿名子类的实例
 
a. LazyModuleImp的匿名子类
 
花括号中定义的是LazyModuleImp的匿名子类。因为这个类只在这里使用一次,所以没有命名。
 
b. 实例化
 
这里的使用就是直接将其实例化:new LazyModuleImp(this) { ... }
 
3) 节点逻辑的实现
 
a. 取出一对输入输出边
 
适配节点把输入边适配之后,通过输出边输出,所以这里输入边和输出边成对取出:
 
b. 判断是否TL-C,即是否支持channel b/c/e:
 
Acquire/Probe都是处理Permission的Transfer消息,TL-C独有:
 
c. 对必然支持的channel a/d做异步处理
 
- 输入边的channel a(in.a)经过异步处理,输出到输出边的channel a(out.a);
- 输出边的channel d(out.d),经过异步处理,输出到输入边的channel d(in.d);
 
d. 若支持b/c/e,则对其做异步处理
 
根据channel方向的不同,使用ToAsyncBundle/FromAsyncBundle:
 
e. 若不支持b/c/e,则处理成:不打扰对方。
 
 
3. 对比
 
1) TLAsyncCrossingSource的diplomacy节点定义为:
 
 
MixedAdapterNode传入了两个参数:TLImp, TLAsyncImp,分别作为InwardNodeImp, OutwardNodeImp:
 
也就是说输入边使用的是TLImp这一组类:
 
输出边使用的是TLAsyncImp这一组类:
 
TLImp这一组是标准接口:
 
TLAsyncImp这一组是添加了异步处理的接口:
 
所以对TLAsyncCrossingSource而言,输入边是标准的tilelink连接(link, 包含channel a/b/c/d/e), 而输出边是加了异步处理的tilelink连接。
 
异步信号从TLAsyncCrossingSource节点发出,所以是异步信号的上游节点(Source)。
 
2) TLAsyncCrossingSink的diplomacy节点定义为:
 
与TLAsyncCrossingSource相反:
其输入边为加了异步处理的TLAsyncBundle,输出边为TLBundle。
 
异步信号输入TLAsyncCrossingSink节点,所以是下游节点(Sink)。
 
3) 组合
 
TLAsyncCrossingSource和TLAsyncCrossingSink连接在一起,组成了一个异步适配结构。输入的TLBundle输入TLAsyncCrossingSource节点,经过这个适配结构异步处理之后,从TLAsyncCrossingSink的输出边输出。
 
4. TLAsyncCrossing
 
把TLAsyncCrossingSource和TLAsyncCrossingSink连接在一起:
 
1) 复合节点:包含子节点
 
这是一个复合节点,其内部包含source/sink两个子节点。
 
2) 子节点连接
 
这两个节点直接连在一起:sink.node := source.node。
 
3) 悬边(Dangle)
 
悬边是指子节点悬而未连的边。
 
source没有输入边,sink没有输出边。所以自成一体,不需要跟父节点连接。也就不存在需要父节点中转(forward)的悬边(Dangle)。
 
4) 适配器节点
 
source是一个适配器节点,但是并没有输入边连接,所以不能适配输入只能自行输出;
sink是一个适配器节点,但是并没有输出边连接,所以不能把输入适配出去,只能自行消化;
 
由此可以看出,适配器节点的特点是,有则适配,无则不适配。
 
5) 时钟和复位信号
 
source和sink这两个LazyModule包含时钟和复位信号,TLAsyncCrossing需要为他们引入时钟和复位信号。
 
 
5. 组合与继承
 
可以看到diplomacy Node是以组合的形式出现在各个LazyModule中的,如TLAsyncCrossingSource和TLAsyncCrossingSink中都有一个node成员。
 
这个意义是:
a. TLAsyncCrossingSource有一个(has a)异步处理上游节点(TLAsyncSourceNode);
b. TLAsyncCrossingSink有一个(has a)异步处理下游节点(TLAsyncSinkNode);
 
如果使用继承关系,意义就是:
a. TLAsyncCrossingSource是一个(is a)异步处理上游节点(TLAsyncSourceNode);
b. TLAsyncCrossingSink是一个(is a)异步处理下游节点(TLAsyncSinkNode);
 
两者在意义上不相同,在使用上灵活度也不同。这里权且提出这个问题,不做深入讨论。
 

Rocket - tilelink - AsyncCrossing的更多相关文章

  1. Rocket - tilelink - RegisterRouter

    https://mp.weixin.qq.com/s/DaJhf7hEoWsEi_AjwSrOfA   简单介绍RegisterRouter的实现.   ​​   1. 基本介绍   实现挂在Tile ...

  2. Rocket - tilelink - Nodes

    https://mp.weixin.qq.com/s/KJ8pVH76rdxPOZ1vE3QlKA   简单介绍tilelink对Diplomacy Nodes的实现.   ​​   1. TLImp ...

  3. Rocket - tilelink - mask

    https://mp.weixin.qq.com/s/Gqv09RIgSSg5VKe-wb4aGg   讨论tilelink中使用MaskGen生成mask的用法.   1. tilelink中的ma ...

  4. Rocket - tilelink - Parameters

    https://mp.weixin.qq.com/s/1I6DcONr0Mg7xiX8F1C7SQ   简单介绍TileLink相关的参数实现(具体问题暂时不展开,后续用到时再做分析).   ​​   ...

  5. Rocket - tilelink - Bundles

    https://mp.weixin.qq.com/s/jrqBg2AIpQogBrpwNXjmwg   简单介绍Bundles文件中对TileLink规范(1.7.1)的定义. 参考链接:https: ...

  6. Rocket - tilelink - TLBusWrapper.to

    https://mp.weixin.qq.com/s/jSnhBzU5_ayQCg5fWAcx-g 简单介绍TLBusWrapper.to()的实现.主要介绍确定this{...}对应代码的过程. 1 ...

  7. Rocket - tilelink - BusWrapper

    https://mp.weixin.qq.com/s/03BvgTNQtD75Guco6gUGQg   简单介绍BusWrapper的实现.   1. HasTLBusParams   定义SoC的挂 ...

  8. Rocket - tilelink - Xbar

    https://mp.weixin.qq.com/s/UXFHYEQaYotWNEhshro68Q   简单介绍Xbar的实现.   ​​   1. 基本介绍   用于为Xbar的输入和输出连接生成内 ...

  9. Rocket - tilelink - WidthWidget

    https://mp.weixin.qq.com/s/pmJcsRMviJZjMwlwYw6OgA   简单介绍WidthWidget的实现.   ​​   1. 基本介绍   用于设定与上游节点连接 ...

随机推荐

  1. ASP.NET Core Blazor 初探之 Blazor WebAssembly

    最近Blazor热度很高,传说马上就要发布正式版了,做为微软脑残粉,赶紧也来凑个热闹,学习一下. Blazor Blazor是微软在ASP.NET Core框架下开发的一种全新的Web开发框架.Bla ...

  2. Spring官网阅读(七)容器的扩展点(二)FactoryBean

    在上篇文章中我们已经对容器的第一个扩展点(BeanFactoryPostProcessor)做了一系列的介绍.其中主要介绍了Spring容器中BeanFactoryPostProcessor的执行流程 ...

  3. 03_CSS入门和高级技巧(1)

    上节课知识的复习 插入图片,页面中能够插入的图片类型:jpg.jpeg.bmp.png.gif:不能的psd.fw. 语法: <img src="路径" alt=" ...

  4. Vue + Element-ui实现后台管理系统(1) --- 总述

    总述 一.项目效果  整体效果 登陆页 后台首页 用户管理页 说明 这里所有的数据都不是直接通过后端获取的, 而是通过Mock这个工具来模拟后端返回的接口数据. 附上github地址: mall-ma ...

  5. Vue + Element-ui实现后台管理系统(3)---面包屑 + Tag标签切换功能

    面包屑 + Tag标签切换功能 有关后台管理系统之前写过两遍博客,看这篇之前最好先看下这两篇博客.另外这里只展示关键部分代码,项目代码放在github上: mall-manage-system 1.V ...

  6. 自动化测试po模式是什么?自动化测试po分层如何实现?-附详细源码

    一.什么是PO模式 全称:page object model  简称:POM/PO PO模式最核心的思想是分层,实现松耦合!实现脚本重复使用,实现脚本易维护性! ​ 主要分三层: 1.基础层BaseP ...

  7. 设计模式之GOF23桥接模式

    桥接模式 当一个问题违反单一职责原则时,及控制该产品的有多个维度,为了扩展时减少类的膨胀个数,可以选用桥接模式 避免多重继承时 例如买电脑时                  桥接模式

  8. [hdu4599]期望DP

    思路:容易知道G(x)=6x,H(x)=6F(x).此题的关键是求出F(x)的通项,要求F(x)的通项,先建立递推式:F(x)=1/6 * (F(x-1)+1) + 5/6 * (F(x-1)+1+F ...

  9. [hdu4598]二分图判定,差分约束

    题意: 给一个图,问能否给每个点分配一个实数值,使得存在一个数实数T,所有点满足:|value(i)| < T 且 u,v之间有边<=> |value(u)-value(v)| &g ...

  10. 【SMB源码解析系列】——003.SMB游戏基本框架

    前面有了解到RESET中断相关代码,结尾处通过一句jmp进入了无限循环,之后CPU将会在每一帧PUU进入VBlank状态时,接收NMI中断信号, 跳转至NMI代码处继续执行,直到遇见RTI指令时又返回 ...