2019-ICCV-PDARTS-Progressive Differentiable Architecture Search Bridging the Depth Gap Between Search and Evaluation-论文阅读
P-DARTS
2019-ICCV-Progressive Differentiable Architecture Search Bridging the Depth Gap Between Search and Evaluation
- Tongji University && Huawei
- GitHub: 200+ stars
- Citation:49
Motivation
Question:
DARTS has to search the architecture in a shallow network while evaluate in a deeper one.
DARTS在浅层网络上搜索,在深层网络上评估(cifar search in 8-depth, eval in 20-depth)。
This brings an issue named the depth gap (see Figure 1(a)), which means that the search stage finds some operations that work well in a shallow architecture, but the evaluation stage actually prefers other operations that fit a deep architecture better.
Such gap hinders these approaches in their application to more complex visual recognition tasks.
Contribution
propose Progressive DARTS (P-DARTS), a novel and efficient algorithm to bridge the depth gap.
Bring two questions:
Q1: While a deeper architecture requires heavier computational overhead
we propose search space approximation which, as the depth increases, reduces the number of candidates (operations) according to their scores in the elapsed search process.
Q2:Another issue, lack of stability, emerges with searching over a deep architecture, in which the algorithm can be biased heavily towards skip-connect as it often leads to rapidest error decay during optimization, but, actually, a better option often resides in learnable operations such as convolution.
we propose search space regularization, which (i) introduces operation-level Dropout [25] to alleviate the dominance of skip-connect during training, and (ii) controls the appearance of skip-connect during evaluation.
Method
search space approximation
在初始阶段,搜索网络相对较浅,但是cell中每条边上的候选操作最多(所有操作)。在阶段 \(S_{k-1}\)中,根据学习到的网络结构参数(权值)来排序并筛选出权值(重要性)较高的 \(O_k\) 个操作,并由此搭建一个拥有 \(L_k\) 个cell的搜索网络用于下一阶段的搜索,其中, \(L_k > L_{k-1} , O_k < O_{k-1}\) .
这个过程可以渐进而持续地增加搜索网络的深度,直到足够接近测试网络深度。
search space regularization
we observe that information prefers to flow through skip-connect instead of convolution or pooling, which is arguably due to the reason that skip-connect often leads to rapid gradient descent.
实验结果表明在本文采用的框架下,信息往往倾向于通过skip-connect流动,而不是卷积。这是因为skip-connect通常处在梯度下降最速的路径上。
the search process tends to generate architectures with many skip-connect operations, which limits the number of learnable parameters and thus produces unsatisfying performance at the evaluation stage.
在这种情况下,最终搜索得到的结构往往包含大量的skip-connect操作,可训练参数较少,从而使得性能下降。
We address this problem by search space regularization, which consists of two parts.
First, we insert operation-level Dropout [25] after each skip-connect operation, so as to partially ‘cut off’ the straightforward path through skip-connect, and facilitate the algorithm to explore other operations.
作者采用搜索空间正则来解决这个问题。一方面,作者在skip-connect操作后添加Operations层面的随机Dropout来部分切断skip-connect的连接,迫使算法去探索其他的操作。
However, if we constantly block the path through skip-connect, the algorithm will drop them by assigning low weights to them, which is harmful to the final performance.
然而,持续地阻断这些路径的话会导致在最终生成结构的时候skip-connect操作仍然受到抑制,可能会影响最终性能。
we gradually decay the Dropout rate during the training process in each search stage, thus the straightforward path through skip-connect is blocked at the beginning and treated equally afterward when parameters of other operations are well learned, leaving the algorithm itself to make the decision.
因此,作者在训练的过程中逐渐地衰减Dropout的概率,在训练初期施加较强的Dropout,在训练后期将其衰减到很轻微的程度,使其不影响最终的网络结构参数的学习。
Despite the use of Dropout, we still observe that skip-connect, as a special kind of operation, has a significant impact on recognition accuracy at the evaluation stage.
另一方面,尽管使用了Operations层面的Dropout,作者依然观察到了skip-connect操作对实验性能的强烈影响。
This motivates us to design the second regularization rule, architecture refinement, which simply controls the number of preserved skip-connects, after the final search stage, to be a constant M.
因此,作者提出第二个搜索空间正则方法,即在最终生成的网络结构中,保留固定数量的skip-connect操作。具体的,作者根据最终阶段的结构参数,只保留权值最大的M个skip-connect操作,这一正则方法保证了搜索过程的稳定性。在本文中, M=2 .
We emphasize that the second regularization technique must be applied on top of the first one, otherwise, in the situations without operation-level Dropout, the search process is producing low-qualityarchitectureweights, basedon which we could not build up a powerful architecture even with a fixed number of skip-connects.
需要强调的是,第二种搜索空间正则是建立在第一种搜索空间正则的基础上的。在没有执行第一种正则的情况下,即使执行第二种正则,算法依旧会生成低质量的网络结构。
Experiments
Cell arch in different Search Stage
cifar10
ImageNet
·
Conclusion
we propose a progressive version of differentiable architecture search to bridge the depth gap between search and evaluation scenarios.
The core idea is to gradually increase the depth of candidate architectures during the search process.
- 2Q: computational overhead and instability
Search space approximate and Search space regularize
Our research defends the importance of depth in differentiable architecture search, depth is still the dominant factor in exploring the architecture space.
2019-ICCV-PDARTS-Progressive Differentiable Architecture Search Bridging the Depth Gap Between Search and Evaluation-论文阅读的更多相关文章
- 论文笔记:Progressive Differentiable Architecture Search:Bridging the Depth Gap between Search and Evaluation
Progressive Differentiable Architecture Search:Bridging the Depth Gap between Search and Evaluation ...
- 论文笔记:DARTS: Differentiable Architecture Search
DARTS: Differentiable Architecture Search 2019-03-19 10:04:26accepted by ICLR 2019 Paper:https://arx ...
- 论文笔记:Progressive Neural Architecture Search
Progressive Neural Architecture Search 2019-03-18 20:28:13 Paper:http://openaccess.thecvf.com/conten ...
- (转)Illustrated: Efficient Neural Architecture Search ---Guide on macro and micro search strategies in ENAS
Illustrated: Efficient Neural Architecture Search --- Guide on macro and micro search strategies in ...
- 2019-ICLR-DARTS: Differentiable Architecture Search-论文阅读
DARTS 2019-ICLR-DARTS Differentiable Architecture Search Hanxiao Liu.Karen Simonyan.Yiming Yang GitH ...
- 2019 ICCV、CVPR、ICLR之视频预测读书笔记
2019 ICCV.CVPR.ICLR之视频预测读书笔记 作者 | 文永亮 学校 | 哈尔滨工业大学(深圳) 研究方向 | 视频预测.时空序列预测 ICCV 2019 CVP github地址:htt ...
- 微软的一篇ctr预估的论文:Web-Scale Bayesian Click-Through Rate Prediction for Sponsored Search Advertising in Microsoft’s Bing Search Engine。
周末看了一下这篇论文,觉得挺难的,后来想想是ICML的论文,也就明白为什么了. 先简单记录下来,以后会继续添加内容. 主要参考了论文Web-Scale Bayesian Click-Through R ...
- LeetCode 33 Search in Rotated Sorted Array [binary search] <c++>
LeetCode 33 Search in Rotated Sorted Array [binary search] <c++> 给出排序好的一维无重复元素的数组,随机取一个位置断开,把前 ...
- 33. Search in Rotated Sorted Array & 81. Search in Rotated Sorted Array II
33. Search in Rotated Sorted Array Suppose an array sorted in ascending order is rotated at some piv ...
随机推荐
- Android 开发技术周报 Issue#278
新闻 Pixel 4a渲染图曝光:或能成新款iPhone SE有力竞争者 Google Play商店为预注册的游戏和应用提供自动安装功能 Android最强单摄Pixel 4a样张曝光:1200万像素 ...
- Java——多线程锁的那些事
引入 Java提供了种类丰富的锁,每种锁因其特性的不同,在适当的场景下能够展现出非常高的效率. 下面先带大家来总体预览一下锁的分类图 1.乐观锁 VS 悲观锁 乐观锁与悲观锁是一种广义上的概念,体现了 ...
- HDU1300Pearls
传送门 描述: 有几种不同的珍珠.每种珍珠都有它的单价.当然质量高的珍珠价格一定也是高的. 为了避免买家只买1个珍珠.就要求不论是买了多少个珍珠都是需要在购买数量上加10.之后乘上单价. 例如:买5个 ...
- VSCode最强助攻
VSCode最强助攻 VS Code是前端界必备的开发工具.页面仔小杨简单介绍几款高效.好用的插件,让原本单薄的VS Code如虎添翼,开发效率倍增. vscode-icons vscode-icon ...
- 万盛酒店餐饮管理系统(SpringBoot,SSM,MySQL )
项目源码获取地址: 链接:https://pan.baidu.com/s/1ip0keQruE2crA8vm1n8ZXQ 提取码:kivb 复制这段内容后打开百度网盘手机App,操作更方便哦 [功能包 ...
- 浅析Spring中AOP的实现原理——动态代理
一.前言 最近在复习Spring的相关内容,刚刚大致研究了一下Spring中,AOP的实现原理.这篇博客就来简单地聊一聊Spring的AOP是如何实现的,并通过一个简单的测试用例来验证一下.废话不 ...
- CF-448C Painting Fence 分治
Painting fence 题意 乍一看以为是之前做过的一道单调队列优化的DP,不是. 也是有n块木板,每个木板宽1米,有一个高度ai,现在要把他们刷成橘色,给了你一个宽一米的刷子,你可以横着刷,或 ...
- 常见的GAN网络的相关原理及推导
常见的GAN网络的相关原理及推导 在上一篇中我们给大家介绍了GAN的相关原理和推导,GAN是VAE的后一半,再加上一个鉴别网络.这样而导致了完全不同的训练方式. GAN,生成对抗网络,主要有两部分构成 ...
- 前端:参数传错了,spring-boot:那错误信息我给你显示的友好点儿
之前两篇文章 Spring-boot自定义参数校验注解和如何在spring-boot中进行参数校验,我们介绍了,参数校验以及如何自定义参数校验注解,但是当传递参数出错时,只是把错误信息打印到了控制台, ...
- 正则表达式 [:graph:] 含义
[:graph:] 代表printable and visible的字符,是除空格符(空格键与[TAB]键)之外的所有按键, 控制字符不算[:graph:] https://www.regular-e ...