UVA - 10539 Almost Prime Numbers (几乎是素数)
题意:输入两个正整数L、U(L<=U<1012),统计区间[L,U]的整数中有多少个数满足:它本身不是素数,但只有一个素因子。
分析:
1、满足条件的数是素数的倍数。
2、枚举所有的素数,以及其倍数,将满足条件且小于等于n的个数计算出来,solve(u) - solve(l - 1)即可。
#pragma comment(linker, "/STACK:102400000, 102400000")
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<cmath>
#include<iostream>
#include<sstream>
#include<iterator>
#include<algorithm>
#include<string>
#include<vector>
#include<set>
#include<map>
#include<stack>
#include<deque>
#include<queue>
#include<list>
#define Min(a, b) ((a < b) ? a : b)
#define Max(a, b) ((a < b) ? b : a)
const double eps = 1e-8;
inline int dcmp(double a, double b) {
if(fabs(a - b) < eps) return 0;
return a < b ? -1 : 1;
}
typedef long long LL;
typedef unsigned long long ULL;
const int INT_INF = 0x3f3f3f3f;
const int INT_M_INF = 0x7f7f7f7f;
const LL LL_INF = 0x3f3f3f3f3f3f3f3f;
const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f;
const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1};
const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1};
const int MOD = 1e9 + 7;
const double pi = acos(-1.0);
const int MAXN = 1e6 + 10;
const int MAXT = 10000 + 10;
using namespace std;
int vis[MAXN];
vector<LL> prime;
void init(){
for(int i = 2; i < MAXN; ++i){
if(!vis[i]){
prime.push_back(i);
for(int j = 2 * i; j < MAXN; j += i){
vis[j] = 1;
}
}
}
}
LL solve(LL n){
LL ans = 0;
int len = prime.size();
for(int i = 0; i < len; ++i){
LL tmp = prime[i] * prime[i];
if(tmp > n) break;
while(tmp <= n){
++ans;
tmp *= prime[i];
}
}
return ans;
}
int main(){
init();
int T;
scanf("%d", &T);
while(T--){
LL l, u;
scanf("%lld%lld", &l, &u);
printf("%lld\n", solve(u) - solve(l - 1));
}
return 0;
}
UVA - 10539 Almost Prime Numbers (几乎是素数)的更多相关文章
- UVA 10539 - Almost Prime Numbers(数论)
UVA 10539 - Almost Prime Numbers 题目链接 题意:给定一个区间,求这个区间中的Almost prime number,Almost prime number的定义为:仅 ...
- UVA 10539 - Almost Prime Numbers 素数打表
Almost prime numbers are the non-prime numbers which are divisible by only a single prime number.In ...
- UVA 1415 - Gauss Prime(数论,高斯素数拓展)
UVA 1415 - Gauss Prime 题目链接 题意:给定a + bi,推断是否是高斯素数,i = sqrt(-2). 思路:普通的高斯素数i = sqrt(-1),推断方法为: 1.假设a或 ...
- How many prime numbers(求素数个数)
How many prime numbers Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/O ...
- HDU 2138 How many prime numbers (判素数,米勒拉宾算法)
题意:给定一个数,判断是不是素数. 析:由于数太多,并且太大了,所以以前的方法都不适合,要用米勒拉宾算法. 代码如下: #include <iostream> #include <c ...
- algorithm@ Sieve of Eratosthenes (素数筛选算法) & Related Problem (Return two prime numbers )
Sieve of Eratosthenes (素数筛选算法) Given a number n, print all primes smaller than or equal to n. It is ...
- UVa 1210 (高效算法设计) Sum of Consecutive Prime Numbers
题意: 给出n,求把n写成若干个连续素数之和的方案数. 分析: 这道题非常类似大白书P48的例21,上面详细讲了如何从一个O(n3)的算法优化到O(n2)再到O(nlogn),最后到O(n)的神一般的 ...
- HDOJ(HDU) 2138 How many prime numbers(素数-快速筛选没用上、)
Problem Description Give you a lot of positive integers, just to find out how many prime numbers the ...
- CodeForces 385C Bear and Prime Numbers 素数打表
第一眼看这道题目的时候觉得可能会很难也看不太懂,但是看了给出的Hint之后思路就十分清晰了 Consider the first sample. Overall, the first sample h ...
随机推荐
- springboot#配置文件处理
1. 加载自定义属性文件 2. 通过bean聚合相关属性 1. 在启动类上通过如下注解可以加载自定义的属性文件 @PropertySource(value = {"classpath:pro ...
- k-近邻算法采用for循环调参方法
//2019.08.02下午#机器学习算法中的超参数与模型参数1.超参数:是指机器学习算法运行之前需要指定的参数,是指对于不同机器学习算法属性的决定参数.通常来说,人们所说的调参就是指调节超参数.2. ...
- java表单基础
一.表单 基本语法: <form method="表单提交方式(post/get)" action="表单提交地址"> </ ...
- JuJu团队1月7号工作汇报
JuJu团队1月7号工作汇报 JuJu 周六周日放假,所以空了两天~ Scrum 团队成员 今日工作 剩余任务 困难 飞飞 完成data process readme部分 实现三维Dense 无 ...
- vue 路由过渡效果(1)
1.html界面 <transition name="slide"> <router-view></router-view> </tran ...
- git使用问题一新建本地仓库添加远程合并推送
1,git远程新建仓库demo 2,git本地初始化仓库demo 3,git本地添加远程仓库 git remote add <name> <url> 4,git把远程仓库pul ...
- ROS常用库(五)navigation之Tutorials
一.TF 详见古月居 https://www.guyuehome.com/355 重点:广播TF,订阅,编译时Cmakelist添加编译选项 broadcaster.sendTransform( tf ...
- 解决win10创建Django工程,运行django-admin.py startproject 工程名,失败的问题
在看我这篇教程的前提是你应该已经正确装好python和Django了,好了,废话不说了,正题走你!你现在是不是很纠结自己运行django-admin.py startproject 工程名 ...
- SpringBoot学习(学习过程记录)
关于微服务和SOA 这,仅是我学习过程中记录的笔记.确定了一个待研究的主题,对这个主题进行全方面的剖析.笔记是用来方便我回顾与学习的,欢迎大家与我进行交流沟通,共同成长.不止是技术. 官网教程学习ht ...
- centos7创建ssh公钥
步骤1:使用ssh-keygen命令创建公钥和私钥 [root@model /]# [root@model /]# ssh-keygen -t rsa -P '' Generating public/ ...