Microsoft COCO 数据集
本篇博客主要以介绍MS COCO数据集为目标,分为3个部分:COCO介绍,数据集分类和COCO展示。
本人主要下载了其2014年版本的数据,一共有20G左右的图片和500M左右的标签文件。标签文件标记了每个segmentation+bounding box的精确坐标,其精度均为小数点后两位。一个目标的标签示意如下:
{"segmentation":[[392.87, 275.77, 402.24, 284.2, 382.54, 342.36, 375.99, 356.43, 372.23, 357.37, 372.23, 397.7, 383.48, 419.27,407.87, 439.91, 427.57, 389.25, 447.26, 346.11, 447.26, 328.29, 468.84, 290.77,472.59, 266.38], [429.44,465.23, 453.83, 473.67, 636.73, 474.61, 636.73, 392.07, 571.07, 364.88, 546.69,363.0]], "area": 28458.996150000003, "iscrowd": 0,"image_id": 503837, "bbox": [372.23, 266.38, 264.5,208.23], "category_id": 4, "id": 151109},
具体的segmentation后面的数字到底是什么,说明有详细介绍,是分为RLE和Polygon两种形式的标签,具体标签说明见: http://mscoco.org/dataset/#download
下面来介绍一下这个数据集。
COCO简介:
COCO数据集是微软团队获取的一个可以用来图像recognition+segmentation+captioning 数据集,其官方说明网址:http://mscoco.org/。
该数据集主要有的特点如下:(1)Object
segmentation(2)Recognition in Context(3)Multiple objects per
image(4)More than 300,000 images(5)More than 2 Million instances(6)80
object categories(7)5 captions
per image(8)Keypoints on 100,000 people
为了更好的介绍这个数据集,微软在ECCV
Workshops里发表这篇文章:Microsoft COCO: Common Objects in
Context。从这篇文章中,我们了解了这个数据集以scene
understanding为目标,主要从复杂的日常场景中截取,图像中的目标通过精确的segmentation进行位置的标定。图像包括91类目标,328,000影像和2,500,000个label。
该数据集主要解决3个问题:目标检测,目标之间的上下文关系,目标的2维上的精确定位。数据集的对比示意图:
数据集分类:
Image Classification:
分类需要二进制的标签来确定目标是否在图像中。早期数据集主要是位于空白背景下的单一目标,如MNIST手写数据库,COIL household objects。在机器学习领域的著名数据集有CIFAR-10 and CIFAR-100,在32*32影像上分别提供10和100类。最近最著名的分类数据集即ImageNet,22,000类,每类500-1000影像。
Object Detection:
经典的情况下通过bounding
box确定目标位置,期初主要用于人脸检测与行人检测,数据集如Caltech Pedestrian
Dataset包含350,000个bounding box标签。PASCAL
VOC数据包括20个目标超过11,000图像,超过27,000目标bounding
box。最近还有ImageNet数据下获取的detection数据集,200类,400,000张图像,350,000个bounding
box。由于一些目标之间有着强烈的关系而非独立存在,在特定场景下检测某种目标是是否有意义的,因此精确的位置信息比bounding
box更加重要。
Semantic scene labeling:
这类问题需要pixel级别的标签,其中个别目标很难定义,如街道和草地。数据集主要包括室内场景和室外场景的,一些数据集包括深度信息。其中,SUN
dataset包括908个场景类,3,819个常规目标类(person, chair, car)和语义场景类(wall, sky,
floor),每类的数目具有较大的差别(这点COCO数据进行改进,保证每一类数据足够)。
Other vision datasets:
一些数据集如Middlebury datasets,包含立体相对,多视角立体像对和光流;同时还有Berkeley Segmentation Data Set (BSDS500),可以评价segmentation和edge detection算法。
COCO展示:
该数据集标记流程如下:
COCO数据集有91类,虽然比ImageNet和SUN类别少,但是每一类的图像多,这有利于获得更多的每类中位于某种特定场景的能力,对比PASCAL VOC,其有更多类和图像。
COCO数据集分两部分发布,前部分于2014年发布,后部分于2015年,2014年版本:82,783
training, 40,504 validation, and 40,775 testing images,有270k的segmented
people和886k的segmented object;2015年版本:165,482 train, 81,208 val, and
81,434
test images。
其性能对比和一些例子:
Microsoft COCO 数据集的更多相关文章
- 在ubuntu1604上使用aria2下载coco数据集效率非常高
简单的下载方法: 所以这里介绍一种能照顾大多数不能上外网的同学的一种简单便捷,又不会中断的下载方法:系统环境: Ubuntu 14.04 方法: a. 使用aria2 搭配命令行下载.需要先安装: s ...
- MS coco数据集下载
2017年12月02日 23:12:11 阅读数:10411 登录ms-co-co数据集官网,一直不能进入,FQ之后开看到下载链接.有了下载链接下载还是很快的,在我这儿晚上下载,速度能达到7M/s,所 ...
- COCO 数据集的使用
Windows 10 编译 Pycocotools 踩坑记 COCO数据库简介 微软发布的COCO数据库, 除了图片以外还提供物体检测, 分割(segmentation)和对图像的语义文本描述信息. ...
- COCO数据集深入理解
TensorExpand/TensorExpand/Object detection/Data_interface/MSCOCO/ 深度学习数据集介绍及相互转换 Object segmentation ...
- 《Microsoft COCO Captions Data Collection and Evaluation Server》论文笔记
出处:CVPR2015 Motivation 本文描述了MSCoco标题数据集及评估服务器(Microsoft COCO Caption dataset and evaluation server), ...
- COCO数据集使用
一.简介 官方网站:http://cocodataset.org/全称:Microsoft Common Objects in Context (MS COCO)支持任务:Detection.Keyp ...
- COCO 数据集使用说明书
下面的代码改写自 COCO 官方 API,改写后的代码 cocoz.py 被我放置在 Xinering/cocoapi.我的主要改进有: 增加对 Windows 系统的支持: 替换 defaultdi ...
- Pascal VOC & COCO数据集介绍 & 转换
目录 Pascal VOC & COCO数据集介绍 Pascal VOC数据集介绍 1. JPEGImages 2. Annotations 3. ImageSets 4. Segmentat ...
- [PocketFlow]解决TensorFLow在COCO数据集上训练挂起无输出的bug
1. 引言 因项目要求,需要在PocketFlow中添加一套PeleeNet-SSD和COCO的API,具体为在datasets文件夹下添加coco_dataset.py, 在nets下添加pelee ...
随机推荐
- HDU 4662 MU Puzzle(找规律)
题意:问是否能把MI通过以下规则转换成给定的字符串s. 1.使M之后的任何字符串加倍(即,将Mx更改为Mxx). 例如:MIU到MIUIU.2.用U替换任何III.例如:MUIIIU至MUUU.3.去 ...
- MVC MVP MVVM 简述
MVC 通过代理或者通知传递数据. MVP 通过P绑定model和view解耦. MVVM 通过V绑定VM(监听VM属性的变化.方法传递(改变自身被监听属性)) VM绑定model设置自身属性.
- java向量 vector
Vector 向量 是java.util 包里的一个类,该类继承AbstractList,实现了类似动态数组的功能. 向量和数组相似,都可以保存一组数据,但数组的大小(长度)是固定的,而Vector ...
- javascript设计模式(1)——面向对象基础
用对象收编变量2种方式 1 函数式 var Object = { name:function(){ return this; }, email:function(){ return this; } } ...
- cf 507E. Breaking Good
因为要求是在保证最短路的情况下花费是最小的,所以(先保证最短路设为S吧) 那么花费就是最短路上的新建边条数A+剩余拆掉边的条数B,而且总的原有好的边是一定的,所以,只要使得A尽量小,那么B就大,所以要 ...
- android 动画基础绘——view 动画
前言 对android 动画的整理,android 动画分为view动画(也叫补间动画),帧动画,属性动画. 看到这几个概念,让我想起了flash这东西.如果需要查各种动画具体的含义,那么可以去查询f ...
- qt 程序发布打包
1. 首先把 release 版本的 exe 复制到其他文件夹,比如 Desktop\test 2. 使用开始菜单中 qt 里面的控制台窗口,使用 cd 命令打开到 Desktop\test 位置,然 ...
- 关于torch.flatten的笔记
先看函数参数: torch.flatten(input, start_dim=0, end_dim=-1) input: 一个 tensor,即要被“推平”的 tensor. start_dim: “ ...
- Hive鲜为人知的宝石-Hooks
本来想祝大家节日快乐,哎,无奈浪尖还在写文章.谴责一下,那些今天不学习的人.对于今天入星球的人,今天调低了一点价格.减少了20大洋.机不可失失不再来.点击阅读原文或者扫底部二维码. hive概述 Hi ...
- web嵌入到原生的app里需要注意的事项
1.https://www.cnblogs.com/shimily/articles/7943370.html 2.https://www.cnblogs.com/stoneniqiu/p/60771 ...