我们接着上面的欧几里得算法说

扩展欧几里得算法

扩展欧几里德算法是用来在已知a, b求解一组x,y,使它们满足贝祖等式\(^①\): ax+by = gcd(a, b) =d(解一定存在,根据数论中的相关定理)。扩展欧几里德常用在求解模线性方程及方程组中。

①:裴蜀定理:

裴蜀定理\((Bezouts identity)\)是代数几何中一个定理,其内容是若设a,b是整数,则存在整数x,y,使得ax+by=gcd(a,b),(a,b)代表最大公因数,则设a,b是不全为零的整数,则存在整数x,y,使得ax+by=(a,b),这里我们不做过多讨论(其实Base-2部分就有记录)。

附上美照:

“对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然

存在整数对 x,y ,使得 gcd(a,b)=ax+by。”我们可以这么描述扩展欧几里得算法

证明

\(gcd(a,b)=gcd(b,a\text %b),\)

令\(ax+by=gcd(a,b)=gcd(b,a \space mod\space b)=c,\)

\[bx'+(a\space mod\space b)y'=ax+by
\]

又因为\((a\space mod\space b)=a-\lfloor\frac ab\rfloor b\)

得$$bx'+ay'-\lfloor\frac ab\rfloor by'=ax+by$$

于是我们可以得到递归过程中层与层之间传递的式子:

\[x=y',y=(x'-\lfloor\frac ab\rfloor y');
\]

int exgcd(int &x,int &y,int a,int b){
if (!b) return a;
int gcd=exgcd(x,y,b,a%b);
int exx=y,exy=x-(a/b)*y;
x=exx,y=exy;return gcd;
}

代码现场手敲的,可能会错qwq

用处

扩欧的用处十分广泛,一般用于求线性同余方程中,用于求逆元过程中可以做到比快速幂更快······

计算\(ax+by=c\)的一般解

\(ax+by=c\)有无穷组解,扩欧计算出来的是其中的一个,我们称之为特解\((x_0,y_0)\),通过求出的特解,我们假设按大小排序,特解\((x_0,y_0)\)的下一组解为\((x_0+c,y_0+d)\),那么一定有:

\(a\cdot (x_0+c)+b\cdot (y_0+d)=c\)

\(ac=-bd\)

即$$\frac cd=-\frac ba=-\frac{\frac{b}{gcd(a,b)}}{\frac{a}{gcd(a,b)}}$$

所以有对于一般解\((x,y)\):\(x=x_0+k\cdot \frac{b}{gcd(a,b)};y=y_0-k\cdot \frac{a}{gcd(a,b)} ,k\in Z\)

同余

当且仅当\(m|(a-b)\)时,我们称\(a\)与\(b\)对模\(m\)同余,记作\(a\equiv b(mod\space m)\) (这里总视\(m>0\))

性质

①\(a\equiv a(mod\space m)\)

②对称性:若\(a\equiv b(mod \space m),\)则$ b\equiv a(mod\space m)$

③传递性:若\(a\equiv b (mod \space m),b\equiv c (mod \space m)\)则\(a\equiv c(mod \space m)\)

④同加同乘性:若\(a\equiv b(mod\space m),c\equiv d (mod \space m)\)则有

\(a\pm c(mod\space m)\equiv b\pm d(mod \space m),\)

\(ac(mod\space m)\equiv bd(mod \space m)\)

⑤若\(n|m,a\equiv b (mod \space m)\)则\(a\equiv b(mod\space n)\)

完全剩余系

对于一个正整数\(n\),如果一个剩余系包含了它所有可能的余数(大多数来讲为\(0,1,\ldots,n-1\)),那么这个剩余系被称为是模\(n\)的一个完全剩余系。记作\(Z_n\)

简化剩余系就是完全剩余系中与\(n\)互素的数,记作\(Z^*_n\)

线性同余方程

数论中,线性同余方程是最基本的同余方程,“线性”表示方程的未知数次数是一次.

即形如\(ax\equiv b(mod\space n)\)的方程\((n>0)\)

求解\(ax\equiv b(mod \space n)\)

关于方程\(ax\equiv b(mod\space n)\),当且仅当\(gcd(a,n)|b\)时有解。

(因为由方程可以得到:\(ax+kn=b\),

可以将此视为另一个方程,由裴蜀定理可得,当且仅当\(gcd(a,n)|b\)时此方程有解)

那么对于上面的方程$ax+kn=b,

\(令\)d=gcd(a,n)\(,则有\)d|b$

又因为\(d|a,d|n\),令\(a_0=\frac ad,n_0=\frac nd\)

有方程\(a_0x+n_0k=\frac bd\)

因为\(gcd(a_0,n_0)=1\),这个方程就可以由扩展欧几里得算法来求得

练习:青蛙的约会

题外话:裴蜀定理的证明

设\(d=gcd(a,b)\),

则有\(d|a,d|b\),易得\(d|(ax+by)\),

故\(\forall x,y\in Z,\)有\(d|(ax+by)\),

则设\(s=(ax+by)\),使\(s\)为满足\(d|(ax+by)\)的最小正值,则有\(d|s\)

令\(q=\lfloor \frac a,s\rfloor,r=a\space mod\space s=a-qs,\)

\(r=a-qax-qby=(1-qx)a+(-qy)b\)

可以看出\(r\)也表示的是\(a,b\)的线性组合,

又因为\(0\leq r<s\),\(s\)又是满足\(d|(ax+by)\)的最小正值,

所以\(r=0\),则有\(s|a,\) 同理\(s|b\),则\(s|d\),

因此可得\(d=s\),命题得证。

初等数论-Base-2(扩展欧几里得算法,同余,线性同余方程,(附:裴蜀定理的证明))的更多相关文章

  1. 详解扩展欧几里得算法(扩展GCD)

    浅谈扩展欧几里得(扩展GCD)算法 本篇随笔讲解信息学奥林匹克竞赛中数论部分的扩展欧几里得算法.为了更好的阅读本篇随笔,读者最好拥有不低于初中二年级(这是经过慎重考虑所评定的等级)的数学素养.并且已经 ...

  2. [数学基础] 4 欧几里得算法&扩展欧几里得算法

    欧几里得算法 欧几里得算法基于的性质: 若\(d|a, a|b\),则\(d|(ax+by)\) \((a,b)=(b,a~mod~b)\) 第二条性质证明: \(\because a~mod~b=a ...

  3. 题解——洛谷P2613 【模板】有理数取余(扩展欧几里得算法+逆元)

    题面 题目描述 给出一个有理数 c=\frac{a}{b}  ​ ,求  c mod19260817  的值. 输入输出格式 输入格式: 一共两行. 第一行,一个整数 \( a \) .第二行,一个整 ...

  4. 【初等数论】裴蜀定理&扩展欧几里得算法

    裴蜀定理: 对于\(a,b\in N^*, x, y\in Z\),方程\(ax+by=k\)当且仅当\(gcd(a, b)|k\)时有解. 证明: 必要性显然. 充分性:只需证明当\(k=gcd(a ...

  5. vijos1009:扩展欧几里得算法

    1009:数论 扩展欧几里得算法 其实自己对扩展欧几里得算法一直很不熟悉...应该是因为之前不太理解的缘故吧这次再次思考,回看了某位大神的推导以及某位大神的模板应该算是有所领悟了 首先根据题意:L1= ...

  6. 『扩展欧几里得算法 Extended Euclid』

    Euclid算法(gcd) 在学习扩展欧几里得算法之前,当然要复习一下欧几里得算法啦. 众所周知,欧几里得算法又称gcd算法,辗转相除法,可以在\(O(log_2b)\)时间内求解\((a,b)\)( ...

  7. 扩展欧几里得算法详解(exgcd)

    一.前言 本博客适合已经学会欧几里得算法的人食用~~~ 二.扩展欧几里得算法 为了更好的理解扩展欧几里得算法,首先你要知道一个叫做贝祖定理的玄学定理: 即如果a.b是整数,那么一定存在整数x.y使得$ ...

  8. 扩展欧几里得算法(extgcd)

    相信大家对欧几里得算法,即辗转相除法不陌生吧. 代码如下: int gcd(int a, int b){ return !b ? gcd(b, a % b) : a; } 而扩展欧几里得算法,顾名思义 ...

  9. noip知识点总结之--欧几里得算法和扩展欧几里得算法

    一.欧几里得算法 名字非常高大上的不一定难,比如欧几里得算法...其实就是求两个正整数a, b的最大公约数(即gcd),亦称辗转相除法 需要先知道一个定理: gcd(a, b) = gcd(b, a  ...

随机推荐

  1. UML-逻辑架构&包图-相关概念

    1.逻辑架构 软件的宏观组织结构.含: 1).包 2).子系统 3).层 2.层 对类.包.子系统的分组(内聚).例如:mvc.在OOA/D中要重点关注核心应用逻辑(或领域)层. 3.UML包图 描述 ...

  2. blocking(非阻塞)回调函数

    回调函数不会造成阻塞 function loop() { setTimeout(loop, 0) } loop 死循环 while(true)

  3. CSP模拟赛2游记

    这次由于有课迟到30min,了所以只考了70min. 调linux配置调了5min,只剩下65min了. T1:有点像标题统计,但要比他坑一点,而且我就被坑了,写了一个for(int i=1;i< ...

  4. Django学习---多人博客项目(1)

    一.创建项目和应用 ​ 在Pycharm中用Django模板创建一个工程文件 创建项目 python manage.py startproject 项目名 . 创建应用 python manage.p ...

  5. dynamic用法

    https://www.cnblogs.com/lgx5/p/9650203.html https://www.cnblogs.com/gygtech/p/9915367.html

  6. [GX/GZOI2019]特技飞行(扫描线+置换)

    感觉是6题中最难的一题,其实这题是一个二合一: 第一问:给定平面上若干点和k个关键点,关键点覆盖一个45°倾斜的正方形范围r,求有多少点被至少一个关键点覆盖.这个可以曼哈顿转切比雪夫距离,然后再扫描线 ...

  7. Codeforces Round #579 (Div. 3) Complete the Projects(贪心、DP)

    http://codeforces.com/contest/1203/problem/F1 Examples input 1 - - output 1 YES input 2 - - output 2 ...

  8. centos7 ModuleNotFoundError: No module named 'users'

    centos7下运行django项目时ModuleNotFoundError: No module named 'users' 由于我的项目目录是下面这样: 因为找不到users的路径 所以在mana ...

  9. TCP与UDP 笔记

    本文整理自:<图解TCP/IP 第5版>作者:[日] 竹下隆史,[日] 村山公保,[日] 荒井透,[日] 苅田幸雄 著译者:乌尼日其其格出版时间:2013-07 TCP提供可靠的通信传输, ...

  10. ccpc20190823

    04 http://acm.hdu.edu.cn/showproblem.php?pid=6705 分析:先把每条边以 形式放进堆,堆按路径权值从小到大排序,然后每次取出堆顶,用v的出边扩展 新的路径 ...