字典树

概述

    字典树,又称单词查找树Trie树,是一种树形结构,是一种哈希树的变种。典型应用是用于统计,排序和保存大量的字符串(但不仅限于字符串),所以经常被搜索引擎系统用于文本词频统计。它的优点是:利用字符串的公共前缀来减少查询时间,最大限度地减少无谓的字符串比较,查询效率比哈希树高。(引自百度百科《字典树》)

光说不懂,上引例——

NKOJ 1934 外地人

    你考入大城市沙坪坝的学校, 但是沙坪坝的当地人说着一种很难懂的方言, 你完全

听不懂。 幸好你手中有本字典可以帮你。 现在你有若干个听不懂的方言需要查询字典。

输入格式

第一行,两个整数n和m。

接下来有n行表示字典的内容,每行表示一条字典的记录。每条记录包含两个空格间隔的单词,第一个单词为英文单词,第二个单词为对应的沙坪坝方言。

接下来有m行,每行一个单词,表示你要查询的沙坪坝方言。

输出格式

输出m行,每行一个英文单词,表示翻译后的结果。

如果某个单词字典查不到,输出"eh"

样例输入

5  3

dog  ogday

cat  atcay

pig  igpay

froot  ootfray

loops  oopslay

atcay

ittenkay

oopslay

样例输出

cat

eh

loops

 注:所有单词都用小写字母表示, 且长度不超过10。

传送门http://oi.nks.edu.cn/zh/Problem/Details/1934

    我们看一下这张图先感受一下Trie树的结构,它是首先建立一个Root根节点,然后在读取后来的字符串的同时,从根节点出发,查找字符串每一位的节点是否存在。若存在,就从这一位出发继续查找下一位;若不存在,就建立这个节点。反复以上过程。注意,Trie树是将字符转换为ASCLL码存取,注意转换。

    显然,借用这样的数据结构,我们可以方便存取大量字符串,大幅度优化空间复杂度。

(不知道ASCLL的点这里)

Trie Tree的特点

  1. 根节点不包含字符, 除根节点外每一个节点都只包含一个字符。

  2. 从根节点到某一节点, 路径上经过的字符连接起来, 为该节点对应的字符串。

  3. 在trie树中查找一个关键字的时间和树中包含的结点数无关, 而取决于组成关键字的字符数。 也就是查找字符串s的时间为O(s.length())

  4. 如果要查找的关键字可以分解成字符序列且不是很长, 利用Trie树查找速度优于二叉查找树。

  如:若关键字长度最大是5, 则利用Trie树, 利用5次比较可以从265=11881376个可能的关键字中检索出指定的关键字。 而利用二叉查找树至少要进行log2265=23.5次比较。

接下来先给出引例题解的main函数部分(部分初始化未给出)——
struct node {
int Num; //如果该节点是一个单词的结尾,记录对应单词的编号
int Next[26]; //儿子节点的编号
}trie[1000001];
string s[100001], a;
int main() {
cin >> n >> m;
for (k = 1; k <= n; k ++){
cin >> s[k] >> a;
Insert(a, k);
}
for (k = 1; k <= m; k ++) {
cin >> a;
ans = Find(a);
if (ans)cout << s[ans];
else cout << "eh" << endl;
}
return 0;
}
接着是两个函数的部分——
void Insert(string c, int k) {
int i, t, len, p = 1;
len = c.length();
for (i = 0; i < len; i ++) {
t = c[i] - 'a';//将字符c[i]转换成值为0到25的数字,比如'a'转换为0,'b'转换为1,‘c’转换为2……
if (trie[p].Next[t] == 0) { //若p没有值为t的儿子
tot ++; //新增一个编号为tot的节点
trie[p].Next[t] = tot; //记下p的值为t的孩子节点的编号
p = trie[p].Next[t]; //p指向新添加的节点
trie[p].Num = 0; //初始化新添加的节点,将其标记为不是单词的结尾
} else p = trie[p].Next[t]; //若p存在值为t的儿子,p指向该儿子,继续讨论
}
trie[p].Num = k; //for循环已执行完,说明第k个单词已加入,在单词结尾做上标记
}

int Find(string c) {
int i, t, len, p = 1;
len = c.length();
for (i = 0; i < len; i ++) {
t = c[i] - 'a';
if (trie[p].Next[t] == 0)return 0; //当前要匹配值为t的字母,若没有则结束
p = trie[p].Next[t]; //若存在值为t的字母,则继续匹配
}
return trie[p].Num; //若for循环执行完毕,说明找到了需要的单词,返回其编号
}
以上的代码几乎就是字典树的模板,在不同的题中main函数或许有所不同,可以借此熟悉一下字典树的工作原理,再酌情修改。

Trie树的应用

 (1) 字符串检索

 (2) 字符串最长公共前缀

#######提供几道字典树的简单练习:

NKOJ 1931 电话簿

NKOJ 1932 找出克隆人

NKOJ 1933 彩色木条

NKOJ 1935 图书管理员

01字典树

    01字典树和普通的字典树原理类似,只不过把插入字符改成了插入二进制串的每一位(0或1)。裸的Trie树可以降低空间复杂度,而01还可以降低时间复杂度。

    它与普通的字典树一样先建立Root根节点,但它不存取复杂字符串,而只能存取含有“0”或“1”字符串或数字串。(所以十进制整数可以看做二进制进行存取)以首位为第一个节点建树,按照前面讲解的普通Trie树的工作原理,我们可以得到一个二叉树,而深度由数字范围决定,比如深度为20的01字典树可以进行存取0~221-1的所有数。

后缀自动机

AC自动机

(后续补充)

字典树基础进阶全掌握(Trie树、01字典树、后缀自动机、AC自动机)的更多相关文章

  1. AC自动机相关Fail树和Trie图相关基础知识

    装载自55242字符串AC自动机专栏 fail树 定义 把所有fail指针逆向,这样就得到了一棵树 (因为每个节点的出度都为1,所以逆向后每个节点入度为1,所以得到的是一棵树) 还账- 有了这个东西, ...

  2. Trie图和Fail树

    Trie图和AC自动机的区别 Trie图是AC自动机的确定化形式,即把每个结点不存在字符的next指针都补全了.这样做的好处是使得构造fail指针时不需要next指针为空而需要不断回溯. 比如构造ne ...

  3. codeforces 842 D. Vitya and Strange Lesson(01字典树+思维+贪心)

    题目链接:http://codeforces.com/contest/842/problem/D 题解:像这种求一段异或什么的都可以考虑用字典树而且mex显然可以利用贪心+01字典树,和线段树差不多就 ...

  4. 【BZOJ2434】阿狸的打字机(AC自动机,树状数组)

    [BZOJ2434]阿狸的打字机(AC自动机,树状数组) 先写个暴力: 每次打印出字符串后,就插入到\(Trie\)树中 搞完后直接搭\(AC\)自动机 看一看匹配是怎么样的: 每次沿着\(AC\)自 ...

  5. 【BZOJ2434】【NOI2011】阿狸的打字机(AC自动机,树状数组)

    [BZOJ2434]阿狸的打字机(AC自动机,树状数组) 先写个暴力: 每次打印出字符串后,就插入到\(Trie\)树中 搞完后直接搭\(AC\)自动机 看一看匹配是怎么样的: 每次沿着\(AC\)自 ...

  6. CodeForces -163E :e-Government (AC自动机+DFS序+树状数组)

    The best programmers of Embezzland compete to develop a part of the project called "e-Governmen ...

  7. 从Trie谈到AC自动机

    ZJOI的SAM让我深受打击,WJZ大神怒D陈老师之T3是SAM裸题orz...我还怎么混?暂且写篇`从Trie谈到AC自动机`骗骗经验. Trie Trie是一种好玩的数据结构.它的每个结点存的是字 ...

  8. 【AC自动机&&Trie图】积累

    以前KMP和后缀系列(主要是后缀数组,后缀自动机),都刷了一定数量的题,但是对于AC自动机,却有些冷落,罪过. 但是我感觉,在蓝桥杯比赛中AC自动机出现的概率比后缀系列大,简单的会考匹配,稍难一点会考 ...

  9. AC自动机——1 Trie树(字典树)介绍

    AC自动机——1 Trie树(字典树)介绍 2013年10月15日 23:56:45 阅读数:2375 之前,我们介绍了Kmp算法,其实,他就是一种单模式匹配.当要检查一篇文章中是否有某些敏感词,这其 ...

随机推荐

  1. VGG16等keras预训练权重文件的下载及本地存放

    VGG16等keras预训练权重文件的下载: https://github.com/fchollet/deep-learning-models/releases/ .h5文件本地存放目录: Linux ...

  2. JavaScript实现树结构(一)

    JavaScript实现树结构(一) 一.树结构简介 1.1.简单了解树结构 什么是树? 真实的树: 树的特点: 树一般都有一个根,连接着根的是树干: 树干会发生分叉,形成许多树枝,树枝会继续分化成更 ...

  3. startUML5.0中的tools下怎么没有java、c等选项

    这也是帮一个直系学妹弄得,哈哈~~~ 具体做法如下: 进入到StartUML\modules目录下,里面有很多文件夹,比如startuml-cpp.startuml-csharp等等, 进入到每个文件 ...

  4. 查看chrome插件源码

    简介 想查看chrome插件的源码,就需要找到chrome插件安装的位置,接着再文件夹下查找此插件的id. mac cd ~/Library/Application Support/Google/Ch ...

  5. scrapy全栈抓xpc练习

    # spider文件 # -*- coding: utf-8 -*- import scrapy import re from scrapy import Request import json im ...

  6. Ubuntu16.04 desktop 设置共享文件夹 -- 图形界面配置

    1. 安装 安装samba 直接采用 Ubuntu16.04 desktop 里面的安装向导来完成: 选中需要共享的文件夹 -> 右键 “local Network Share” -> 安 ...

  7. 【5min+】 一个令牌走天下!.Net Core中的ChangeToken

    系列介绍 [五分钟的dotnet]是一个利用您的碎片化时间来学习和丰富.net知识的博文系列.它所包含了.net体系中可能会涉及到的方方面面,比如C#的小细节,AspnetCore,微服务中的.net ...

  8. typescript package.json vscode 终端 运行任务 Ctrl shift B

    { "dependencies": { "typescript": "^3.6.4" } }

  9. PyQt5UI文件转换为对应版本的py文件

    PyQt5 UI文件转换为对应版本的py文件 #coding=utf-8 ''' PyQt5 UI文件转换为对应版本的py文件 python -m PyQt5.uic.pyuic untitled.u ...

  10. 【2020-03-21】Dubbo本地环境搭建-实现服务注册和消费

    前言 本周主题:加班工作.本周内忙于CRUD不能自拔,基本每天都是九点半下班,下周上线,明天还要加班推进进度.今天是休息日,于是重拾起了dubbo,打算近期深入了解一下其使用和原理.之所以说是重拾,是 ...