Transformation 和 Action 常用算子

一、Transformation
        1.1 map
        1.2 filter
        1.3 flatMap
        1.4 mapPartitions
        1.5 mapPartitionsWithIndex
        1.6 sample
        1.7 union
        1.8 intersection
        1.9 distinct
        1.10 groupByKey
        1.11 reduceByKey
        1.12 sortBy & sortByKey
        1.13 join
        1.14 cogroup
        1.15 cartesian
        1.16 aggregateByKey
二、Action
        2.1 reduce
        2.2 takeOrdered
        2.3 countByKey
        2.4 saveAsTextFile

一、Transformation

spark 常用的 Transformation 算子如下表:

Transformation 算子 Meaning(含义)
map(func) 对原 RDD 中每个元素运用 func 函数,并生成新的 RDD
filter(func) 对原 RDD 中每个元素使用func 函数进行过滤,并生成新的 RDD
flatMap(func) 与 map 类似,但是每一个输入的 item 被映射成 0 个或多个输出的 items( func 返回类型需要为 Seq )。
mapPartitions(func) 与 map 类似,但函数单独在 RDD 的每个分区上运行, func函数的类型为 Iterator<T> => Iterator<U> ,其中 T 是 RDD 的类型,即 RDD[T]
mapPartitionsWithIndex(func) 与 mapPartitions 类似,但 func 类型为 (Int, Iterator<T>) => Iterator<U> ,其中第一个参数为分区索引
sample(withReplacement, fraction, seed) 数据采样,有三个可选参数:设置是否放回(withReplacement)、采样的百分比(fraction)、随机数生成器的种子(seed);
union(otherDataset) 合并两个 RDD
intersection(otherDataset) 求两个 RDD 的交集
distinct([numTasks])) 去重
groupByKey([numTasks]) 按照 key 值进行分区,即在一个 (K, V) 对的 dataset 上调用时,返回一个 (K, Iterable<V>)
Note: 如果分组是为了在每一个 key 上执行聚合操作(例如,sum 或 average),此时使用 reduceByKeyaggregateByKey 性能会更好
Note: 默认情况下,并行度取决于父 RDD 的分区数。可以传入 numTasks 参数进行修改。
reduceByKey(func, [numTasks]) 按照 key 值进行分组,并对分组后的数据执行归约操作。
aggregateByKey(zeroValue,numPartitions)(seqOp, combOp, [numTasks]) 当调用(K,V)对的数据集时,返回(K,U)对的数据集,其中使用给定的组合函数和 zeroValue 聚合每个键的值。与 groupByKey 类似,reduce 任务的数量可通过第二个参数进行配置。
sortByKey([ascending], [numTasks]) 按照 key 进行排序,其中的 key 需要实现 Ordered 特质,即可比较
join(otherDataset, [numTasks]) 在一个 (K, V) 和 (K, W) 类型的 dataset 上调用时,返回一个 (K, (V, W)) pairs 的 dataset,等价于内连接操作。如果想要执行外连接,可以使用 leftOuterJoin, rightOuterJoinfullOuterJoin 等算子。
cogroup(otherDataset, [numTasks]) 在一个 (K, V) 对的 dataset 上调用时,返回一个 (K, (Iterable<V>, Iterable<W>)) tuples 的 dataset。
cartesian(otherDataset) 在一个 T 和 U 类型的 dataset 上调用时,返回一个 (T, U) 类型的 dataset(即笛卡尔积)。
coalesce(numPartitions) 将 RDD 中的分区数减少为 numPartitions。
repartition(numPartitions) 随机重新调整 RDD 中的数据以创建更多或更少的分区,并在它们之间进行平衡。
repartitionAndSortWithinPartitions(partitioner) 根据给定的 partitioner(分区器)对 RDD 进行重新分区,并对分区中的数据按照 key 值进行排序。这比调用 repartition 然后再 sorting(排序)效率更高,因为它可以将排序过程推送到 shuffle 操作所在的机器。

下面分别给出这些算子的基本使用示例:

1.1 map

val list = List(1,2,3)
sc.parallelize(list).map(_ * 10).foreach(println)

// 输出结果: 10 20 30 (这里为了节省篇幅去掉了换行,后文亦同)

1.2 filter

val list = List(3, 6, 9, 10, 12, 21)
sc.parallelize(list).filter(_ >= 10).foreach(println)

// 输出: 10 12 21

1.3 flatMap

flatMap(func)map 类似,但每一个输入的 item 会被映射成 0 个或多个输出的 items( func 返回类型需要为 Seq)。

val list = List(List(1, 2), List(3), List(), List(4, 5))
sc.parallelize(list).flatMap(_.toList).map(_ * 10).foreach(println)

// 输出结果 : 10 20 30 40 50

flatMap 这个算子在日志分析中使用概率非常高,这里进行一下演示:拆分输入的每行数据为单个单词,并赋值为 1,代表出现一次,之后按照单词分组并统计其出现总次数,代码如下:

val lines = List("spark flume spark",
                "hadoop flume hive")
sc.parallelize(lines).flatMap(line => line.split(" ")).
map(word=>(word,1)).reduceByKey(_+_).foreach(println)

// 输出:
(spark,2)
(hive,1)
(hadoop,1)
(flume,2)

1.4 mapPartitions

与 map 类似,但函数单独在 RDD 的每个分区上运行, func函数的类型为 Iterator<T> => Iterator<U> (其中 T 是 RDD 的类型),即输入和输出都必须是可迭代类型。

val list = List(1, 2, 3, 4, 5, 6)
sc.parallelize(list, 3).mapPartitions(iterator => {
 val buffer = new ListBuffer[Int]
 while (iterator.hasNext) {
   buffer.append(iterator.next() * 100)
}
 buffer.toIterator
}).foreach(println)
//输出结果
100 200 300 400 500 600

1.5 mapPartitionsWithIndex

与 mapPartitions 类似,但 func 类型为 (Int, Iterator<T>) => Iterator<U> ,其中第一个参数为分区索引。

val list = List(1, 2, 3, 4, 5, 6)
sc.parallelize(list, 3).mapPartitionsWithIndex((index, iterator) => {
 val buffer = new ListBuffer[String]
 while (iterator.hasNext) {
   buffer.append(index + "分区:" + iterator.next() * 100)
}
 buffer.toIterator
}).foreach(println)
//输出
0 分区:100
0 分区:200
1 分区:300
1 分区:400
2 分区:500
2 分区:600

1.6 sample

数据采样。有三个可选参数:设置是否放回 (withReplacement)、采样的百分比 (fraction)、随机数生成器的种子 (seed) :

val list = List(1, 2, 3, 4, 5, 6)
sc.parallelize(list).sample(withReplacement = false, fraction = 0.5).foreach(println)

1.7 union

合并两个 RDD:

val list1 = List(1, 2, 3)
val list2 = List(4, 5, 6)
sc.parallelize(list1).union(sc.parallelize(list2)).foreach(println)
// 输出: 1 2 3 4 5 6

1.8 intersection

求两个 RDD 的交集:

val list1 = List(1, 2, 3, 4, 5)
val list2 = List(4, 5, 6)
sc.parallelize(list1).intersection(sc.parallelize(list2)).foreach(println)
// 输出: 4 5

1.9 distinct

去重:

val list = List(1, 2, 2, 4, 4)
sc.parallelize(list).distinct().foreach(println)
// 输出: 4 1 2

1.10 groupByKey

按照键进行分组:

val list = List(("hadoop", 2), ("spark", 3), ("spark", 5), ("storm", 6), ("hadoop", 2))
sc.parallelize(list).groupByKey().map(x => (x._1, x._2.toList)).foreach(println) //输出:
(spark,List(3, 5))
(hadoop,List(2, 2))
(storm,List(6))

1.11 reduceByKey

按照键进行归约操作:

val list = List(("hadoop", 2), ("spark", 3), ("spark", 5), ("storm", 6), ("hadoop", 2))
sc.parallelize(list).reduceByKey(_ + _).foreach(println) //输出
(spark,8)
(hadoop,4)
(storm,6)

1.12 sortBy & sortByKey

按照键进行排序:

val list01 = List((100, "hadoop"), (90, "spark"), (120, "storm"))
sc.parallelize(list01).sortByKey(ascending = false).foreach(println)
// 输出
(120,storm)
(90,spark)
(100,hadoop)

按照指定元素进行排序:

val list02 = List(("hadoop",100), ("spark",90), ("storm",120))
sc.parallelize(list02).sortBy(x=>x._2,ascending=false).foreach(println)
// 输出
(storm,120)
(hadoop,100)
(spark,90)

1.13 join

在一个 (K, V) 和 (K, W) 类型的 Dataset 上调用时,返回一个 (K, (V, W)) 的 Dataset,等价于内连接操作。如果想要执行外连接,可以使用 leftOuterJoin, rightOuterJoinfullOuterJoin 等算子。

val list01 = List((1, "student01"), (2, "student02"), (3, "student03"))
val list02 = List((1, "teacher01"), (2, "teacher02"), (3, "teacher03"))
sc.parallelize(list01).join(sc.parallelize(list02)).foreach(println) // 输出
(1,(student01,teacher01))
(3,(student03,teacher03))
(2,(student02,teacher02))

1.14 cogroup

在一个 (K, V) 对的 Dataset 上调用时,返回多个类型为 (K, (Iterable<V>, Iterable<W>)) 的元组所组成的 Dataset。

val list01 = List((1, "a"),(1, "a"), (2, "b"), (3, "e"))
val list02 = List((1, "A"), (2, "B"), (3, "E"))
val list03 = List((1, "[ab]"), (2, "[bB]"), (3, "eE"),(3, "eE"))
sc.parallelize(list01).cogroup(sc.parallelize(list02),sc.parallelize(list03)).foreach(println) // 输出: 同一个 RDD 中的元素先按照 key 进行分组,然后再对不同 RDD 中的元素按照 key 进行分组
(1,(CompactBuffer(a, a),CompactBuffer(A),CompactBuffer([ab])))
(3,(CompactBuffer(e),CompactBuffer(E),CompactBuffer(eE, eE)))
(2,(CompactBuffer(b),CompactBuffer(B),CompactBuffer([bB])))

1.15 cartesian

计算笛卡尔积:

val list1 = List("A", "B", "C")
val list2 = List(1, 2, 3)
sc.parallelize(list1).cartesian(sc.parallelize(list2)).foreach(println) //输出笛卡尔积
(A,1)
(A,2)
(A,3)
(B,1)
(B,2)
(B,3)
(C,1)
(C,2)
(C,3)

1.16 aggregateByKey

当调用(K,V)对的数据集时,返回(K,U)对的数据集,其中使用给定的组合函数和 zeroValue 聚合每个键的值。与 groupByKey 类似,reduce 任务的数量可通过第二个参数 numPartitions 进行配置。示例如下:

// 为了清晰,以下所有参数均使用具名传参
val list = List(("hadoop", 3), ("hadoop", 2), ("spark", 4), ("spark", 3), ("storm", 6), ("storm", 8))
sc.parallelize(list,numSlices = 2).aggregateByKey(zeroValue = 0,numPartitions = 3)(
seqOp = math.max(_, _),
combOp = _ + _
).collect.foreach(println)
//输出结果:
(hadoop,3)
(storm,8)
(spark,7)

这里使用了 numSlices = 2 指定 aggregateByKey 父操作 parallelize 的分区数量为 2,其执行流程如下:

 

基于同样的执行流程,如果 numSlices = 1,则意味着只有输入一个分区,则其最后一步 combOp 相当于是无效的,执行结果为:

(hadoop,3)
(storm,8)
(spark,4)

同样的,如果每个单词对一个分区,即 numSlices = 6,此时相当于求和操作,执行结果为:

(hadoop,5)
(storm,14)
(spark,7)

aggregateByKey(zeroValue = 0,numPartitions = 3) 的第二个参数 numPartitions 决定的是输出 RDD 的分区数量,想要验证这个问题,可以对上面代码进行改写,使用 getNumPartitions 方法获取分区数量:

sc.parallelize(list,numSlices = 6).aggregateByKey(zeroValue = 0,numPartitions = 3)(
seqOp = math.max(_, _),
combOp = _ + _
).getNumPartitions

 

二、Action

Spark 常用的 Action 算子如下:

Action(动作) Meaning(含义)
reduce(func) 使用函数func执行归约操作
collect() 以一个 array 数组的形式返回 dataset 的所有元素,适用于小结果集。
count() 返回 dataset 中元素的个数。
first() 返回 dataset 中的第一个元素,等价于 take(1)。
take(n) 将数据集中的前 n 个元素作为一个 array 数组返回。
takeSample(withReplacement, num, [seed]) 对一个 dataset 进行随机抽样
takeOrdered(n, [ordering]) 按自然顺序(natural order)或自定义比较器(custom comparator)排序后返回前 n 个元素。只适用于小结果集,因为所有数据都会被加载到驱动程序的内存中进行排序。
saveAsTextFile(path) 将 dataset 中的元素以文本文件的形式写入本地文件系统、HDFS 或其它 Hadoop 支持的文件系统中。Spark 将对每个元素调用 toString 方法,将元素转换为文本文件中的一行记录。
saveAsSequenceFile(path) 将 dataset 中的元素以 Hadoop SequenceFile 的形式写入到本地文件系统、HDFS 或其它 Hadoop 支持的文件系统中。该操作要求 RDD 中的元素需要实现 Hadoop 的 Writable 接口。对于 Scala 语言而言,它可以将 Spark 中的基本数据类型自动隐式转换为对应 Writable 类型。(目前仅支持 Java and Scala)
saveAsObjectFile(path) 使用 Java 序列化后存储,可以使用 SparkContext.objectFile() 进行加载。(目前仅支持 Java and Scala)
countByKey() 计算每个键出现的次数。
foreach(func) 遍历 RDD 中每个元素,并对其执行fun函数

2.1 reduce

使用函数func执行归约操作:

 val list = List(1, 2, 3, 4, 5)
sc.parallelize(list).reduce((x, y) => x + y)
sc.parallelize(list).reduce(_ + _) // 输出 15

2.2 takeOrdered

按自然顺序(natural order)或自定义比较器(custom comparator)排序后返回前 n 个元素。需要注意的是 takeOrdered 使用隐式参数进行隐式转换,以下为其源码。所以在使用自定义排序时,需要继承 Ordering[T] 实现自定义比较器,然后将其作为隐式参数引入。

def takeOrdered(num: Int)(implicit ord: Ordering[T]): Array[T] = withScope {
.........
}

自定义规则排序:

// 继承 Ordering[T],实现自定义比较器,按照 value 值的长度进行排序
class CustomOrdering extends Ordering[(Int, String)] {
override def compare(x: (Int, String), y: (Int, String)): Int
= if (x._2.length > y._2.length) 1 else -1
} val list = List((1, "hadoop"), (1, "storm"), (1, "azkaban"), (1, "hive"))
// 引入隐式默认值
implicit val implicitOrdering = new CustomOrdering
sc.parallelize(list).takeOrdered(5) // 输出: Array((1,hive), (1,storm), (1,hadoop), (1,azkaban)

2.3 countByKey

计算每个键出现的次数:

val list = List(("hadoop", 10), ("hadoop", 10), ("storm", 3), ("storm", 3), ("azkaban", 1))
sc.parallelize(list).countByKey() // 输出: Map(hadoop -> 2, storm -> 2, azkaban -> 1)

2.4 saveAsTextFile

将 dataset 中的元素以文本文件的形式写入本地文件系统、HDFS 或其它 Hadoop 支持的文件系统中。Spark 将对每个元素调用 toString 方法,将元素转换为文本文件中的一行记录。

val list = List(("hadoop", 10), ("hadoop", 10), ("storm", 3), ("storm", 3), ("azkaban", 1))
sc.parallelize(list).saveAsTextFile("/usr/file/temp")

参考资料

RDD Programming Guide

Spark_Transformation和Action算子的更多相关文章

  1. 入门大数据---Spark_Transformation和Action算子

    一.Transformation spark 常用的 Transformation 算子如下表: Transformation 算子 Meaning(含义) map(func) 对原 RDD 中每个元 ...

  2. RDD之六:Action算子

    本质上在Actions算子中通过SparkContext执行提交作业的runJob操作,触发了RDD DAG的执行. 根据Action算子的输出空间将Action算子进行分类:无输出. HDFS. S ...

  3. 【Spark】RDD操作具体解释4——Action算子

    本质上在Actions算子中通过SparkContext运行提交作业的runJob操作,触发了RDD DAG的运行. 依据Action算子的输出空间将Action算子进行分类:无输出. HDFS. S ...

  4. Spark中的各种action算子操作(java版)

    在我看来,Spark编程中的action算子的作用就像一个触发器,用来触发之前的transformation算子.transformation操作具有懒加载的特性,你定义完操作之后并不会立即加载,只有 ...

  5. 【Spark篇】---Spark中Action算子

    一.前述 Action类算子也是一类算子(函数)叫做行动算子,如foreach,collect,count等.Transformations类算子是延迟执行,Action类算子是触发执行.一个appl ...

  6. 关于spark RDD trans action算子、lineage、宽窄依赖详解

    这篇文章想从spark当初设计时为何提出RDD概念,相对于hadoop,RDD真的能给spark带来何等优势.之前本想开篇是想总体介绍spark,以及环境搭建过程,但个人感觉RDD更为重要 铺垫 在h ...

  7. Spark为什么只有在调用action时才会触发任务执行呢(附算子优化和使用示例)?

    Spark算子主要划分为两类:transformation和action,并且只有action算子触发的时候才会真正执行任务.还记得之前的文章<Spark RDD详解>中提到,Spark ...

  8. Spark:常用transformation及action,spark算子详解

    常用transformation及action介绍,spark算子详解 一.常用transformation介绍 1.1 transformation操作实例 二.常用action介绍 2.1 act ...

  9. (七)Transformation和action详解-Java&Python版Spark

    Transformation和action详解 视频教程: 1.优酷 2.YouTube 什么是算子 算子是RDD中定义的函数,可以对RDD中的数据进行转换和操作. 算子分类: 具体: 1.Value ...

随机推荐

  1. Jest 前端单元测试工具

    Jest和enzyme 前端单元测试工具 什么是Jest? Jest是一个令人愉悦的JavaScript测试框架,其重点是简单性. 它适用于使用以下项目的项目:Babel,TypeScript,Nod ...

  2. chcp437 转换英语,在西班牙语系统中无效

    https://social.technet.microsoft.com/Forums/en-US/9c772011-5094-4df0-bf73-7140bf91673b/chcp-command- ...

  3. 通过注册表查询 .Net Framework 的版本

    HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\NET Framework Setup\NDP\v4\Full 注意:即使卸载 .Net Framework 这些注册表依然 ...

  4. Zabbix备份数据文件

    mysql自带的工具mysqldump,当数据量大了之后进行全备所花的时间比较长,这样将会造成数据库的锁读.从而zabbix服务的监控告警不断,想着做下配置文件的备份.刚好有这么个脚本.满足了需求. ...

  5. Java第一阶段作业总结

    目录 0.前言 1.作业过程总结 2.OO设计心得 3.测试的理解与实践 4.课程收获 5.对课程的建议 前言 本次博客针对第一阶段的三次作业发表总结,作业要求主要是初学者对于Java的基本语法.用法 ...

  6. 对 ThreadLocal 的了解(一)

    Threadlocal ThreadLocal 在我个人理解范围内,主要作用是在同一个线程里面,去共享某个数据给这个线程在不同的阶段去使用. 本次使用范围 在集成 pageOffice 在线 word ...

  7. Spring Cloud sleuth with zipkin over RabbitMQ教程

    文章目录 Spring Cloud sleuth with zipkin over RabbitMQ demo zipkin server的搭建(基于mysql和rabbitMQ) 客户端环境的依赖 ...

  8. js之用IndexOf返回指定字符串的次数

    代码 var Str = "strs,strs,stras,str,strs,strs"; var subStr ="strs" ; var count = 0 ...

  9. 【集群实战】NFS网络文件共享服务3-相关知识补充(showmount,exports,rpc)

    1. showmount命令说明 showmount命令一般用于从NFS客户端检查NFS服务器端共享目录的情况. 参数说明: -e,--exports 显示NFS服务器输出的目录列表 [root@we ...

  10. Java高效开发IntelliJ IDEA 2019.1 新特性

    1. 重构类.文件.符号,Action 搜索 IntelliJ IDEA(以下简称 IDEA) 中的搜索可以分为以下几类 类搜索,比如 Java,Groovy,Scala 等类文件 文件搜索,类文件之 ...