prufer编码

当然你也可以理解为 Cayley 公式,其实这个公式就是prufer编码经过一步就能推出的

P4430 小猴打架

P4981 父子

这俩题差不多


先说父子,很显然题目就是让你求\(n\)个点的有根树有几条

\(n\)个点的无根树的 prufer 编码有\(n-2\)位,且编码和树一一对应并且每一位可以重复

那么就有\(n^{n-2}\)种构造无根树的方法

所以,就让每一个节点轮流当根,所以答案就是\(n^{n-2}\times n=n^{n-1}\)

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
register int x=0;register int y=1;
register char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
inline LL power(LL a,LL b,LL mod){
LL ret=1;
while(b){
if(b&1) ret=ret*a%mod;
a=a*a%mod;b>>=1;
}
return ret;
}
int main(){int T=read();while(T--){
int n=read();
std::printf("%lld\n",power(n,n-1,1e9+9));
}
return 0;
}

小猴打架那题:

一开始森林里面有\(N\)只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友。

每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友。经过\(N-1\)次打架之后,整个森林的小猴都会成为好朋友

现在的问题是,总共有多少种不同的打架过程。

比如当\(N=3\)时,就有\(\{1-2,1-3\},\{1-2,2-3\},\{1-3,1-2\},\{1-3,2-3\},\{2-3,1-2\},\{2-3,1-3\}\)六种不同的打架过程。

这个题要求的是无根树,但是还要算上\(n-1\)条边被加入的不同顺序

所以答案就是\((n-1)!\times n^{n-2}\)

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
register int x=0;register int y=1;
register char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
inline LL power(LL a,LL b,LL mod){
LL ret=1;
while(b){
if(b&1) ret=ret*a%mod;
a=a*a%mod;b>>=1;
}
return ret;
}
int main(){
int n=read();
LL ans=1;
for(reg int i=1;i<n;i++) ans=ans*i%9999991;
std::printf("%lld\n",ans*power(n,n-2,9999991)%9999991);
return 0;
}

P4430 小猴打架、P4981 父子的更多相关文章

  1. 洛谷 P4430 小猴打架

    洛谷 P4430 小猴打架 题目描述 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是好朋友.每次打完架后,打架的双方以及它们的好朋友就会互相认识,成为好朋友.经过N-1次打 ...

  2. P4430 小猴打架

    P4430 小猴打架 题目意思就是让你求,在网格图中(任意两点都有边)的生成树的个数(边的顺序不同也算不同的方案). 首先我们考虑一个生成树,由于一定有n-1条边,单单考虑添加边的顺序,根据乘法原理, ...

  3. [洛谷P4430]小猴打架

    题目大意:有$n$个点,问有多少种连成生成树的方案. 题解:根据$prufer$序列可得,$n$个点的生成树有$n^{n-2}$个,每种生成树有$(n-1)!$种生成方案,所以答案是$n^{n-2}( ...

  4. luogu P4430 小猴打架(prufer编码与Cayley定理)

    题意 n个点问有多少种有顺序的连接方法把这些点连成一棵树. (n<=106) 题解 了解有关prufer编码与Cayley定理的知识. 可知带标号的无根树有nn-2种.然后n-1条边有(n-1) ...

  5. BZOJ1430: 小猴打架

    1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 328  Solved: 234[Submit][Status] Descripti ...

  6. bzoj 1430: 小猴打架 -- prufer编码

    1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MB Description 一开始森林里面有N只互不相识的小猴子,它们经常打架,但打架的双方都必须不是 ...

  7. 【BZOJ 1430】 1430: 小猴打架 (Prufer数列)

    1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 625  Solved: 452 Description 一开始森林里面有N只互不相 ...

  8. bzoj 1430: 小猴打架

    1430: 小猴打架 Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 634  Solved: 461[Submit][Status][Discuss] ...

  9. luogu4430 小猴打架

    假硕讲了个prufer编码和Caylay公式 我为了证明prufer编码没用 所以用矩阵树定理证明了Caylay公式 让我们用矩阵树定理推一波 首先这个小猴打架最后会打成一棵树,这棵树是N个点的完全图 ...

随机推荐

  1. 汇编刷题:内存 MEM 单元开始存放着 10 个带符号字节数据, 编写完整程序求其中正数、 零和负数的个 数, 并分别将它们存于 PLUS、 ZERO 和 NEGO 3 个单元

    DATA SEGMENT MEM DB 12H,91H,73H,64H,20H,0A5H,0D1H,91H,0A2H,00H PLUS DB 00H ZERO DB 00H NEGO DB 00H D ...

  2. lr事务

    事务:transaction(性能里面的定义:客户机对服务器发送请求,服务器做出反应的过程) 用于模拟用户的一个相对完整的业务操作过程:如登录,查询,交易等操作(每次http请求不会用来作为一个事务) ...

  3. 外观模式(c++实现)

    外观模式 目录 外观模式 模式定义 模式动机 UML类图 源码实现 优点 缺点 模式定义 外观模式(Facade),为子系统中的一组接口提供一个一致的界面,此模式定义了一个高层接口,这个接口使得这一子 ...

  4. 003-scanf函数使用和表达式-C语言笔记

    003-scanf函数使用和表达式-C语言笔记 学习目标 1.[掌握]输入函数scanf的基本使用方法 2.[掌握]输入函数scanf运行原理和缓冲区理解 3.[掌握]算术运算符和算术表达式的使用 4 ...

  5. Atlassian 系列软件安装(Crowd+JIRA+Confluence+Bitbucket+Bamboo)

    公司使用的软件开发和协作工具为 Atlassian 系列软件,近期需要从腾讯云迁移到阿里云环境,简单记录下安装和配置过程.(Atlassian 的文档非常详尽,过程中碰见的问题都可以找到解决办法.) ...

  6. 猜数字和飞机大战(Python零基础入门)

    前言 最近有很多零基础初学者问我,有没有适合零基础学习案例,毕竟零基础入门的知识点是非常的枯燥乏味的,如果没有实现效果展示出来,感觉学习起来特别的累,今天就给大家介绍两个零基础入门的基础案例:猜数字游 ...

  7. 如何用python爬虫从爬取一章小说到爬取全站小说

    前言 文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理. PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取http ...

  8. 经常出现在python中的错误和异常处理

    PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取 http://t.cn/A6Zvjdun 使用try except处理异常 上面的代码中,被除数是0,会引发ZeroDivisio ...

  9. 教你如何入手用python实现简单爬虫微信公众号并下载视频

    主要功能 如何简单爬虫微信公众号 获取信息:标题.摘要.封面.文章地址 自动批量下载公众号内的视频 一.获取公众号信息:标题.摘要.封面.文章URL 操作步骤: 1.先自己申请一个公众号 2.登录自己 ...

  10. orcale 树形结构查询

    接到需求是要在一个表中(表结构为主键id和父id)循环显示数据,类似于省市县++这种情况  也可能不只有三级子菜单 id  name   parentid 1     a          0 2  ...