【线段树】bzoj3922 Karin的弹幕
设置一个值K。
d<=K:建立多组线段树;d>K:暴力。
最优时间复杂度的伪计算:
O(n*K*logn(建树)+m*logn(询问类型1)+m*n/K(询问类型2)+m*K*logn(修改))。
求此函数最小值,易得,当K=sqrt(m/logn)时,
时间复杂度:O(m*sqrt(m*logn))。
空间复杂度:O(n*sqrt(m/logn))。
当然,这个计算显然不完全合理,而且,由于使用STL的vector的原因,导致实际建树要慢得多,因此K取得小一些更加合适(跑几组数据自己看看就行了)。如果不稍微小一点是卡不进内存和时间的哦。
#include<cstdio>
#include<vector>
#include<cmath>
using namespace std;
#define lson rt<<1,l,m
#define rson rt<<1|1,m+1,r
#define INF 2147483647
int n,x0,d,a[70001],lim,m;
bool op;
vector<int>b[70][70],maxv[70][70];
void buildtree(int x,int y,int rt,int l,int r)
{
if(l==r)
{
maxv[x][y][rt]=b[x][y][l];
return;
}
int m=l+r>>1;
buildtree(x,y,lson); buildtree(x,y,rson);
maxv[x][y][rt]=max(maxv[x][y][rt<<1],maxv[x][y][rt<<1|1]);
}
void update(int x,int y,int p,int v,int rt,int l,int r)
{
if(l==r) {maxv[x][y][rt]+=v; return;}
int m=l+r>>1;
if(p<=m) update(x,y,p,v,lson);
else update(x,y,p,v,rson);
maxv[x][y][rt]=max(maxv[x][y][rt<<1],maxv[x][y][rt<<1|1]);
}
int query(int x,int y,int ql,int qr,int rt,int l,int r)
{
if(ql<=l&&r<=qr) return maxv[x][y][rt];
int m=l+r>>1,res=-INF;
if(ql<=m) res=max(res,query(x,y,ql,qr,lson));
if(m<qr) res=max(res,query(x,y,ql,qr,rson));
return res;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;++i) scanf("%d",&a[i]);
scanf("%d",&m);
lim=(int)sqrt((double)m/(log((double)n)/log(2.0)))/14;
if(!lim) lim=1;
for(int i=1;i<=lim;++i)//枚举公差
for(int j=1;j<=lim;++j)//枚举首项
{
b[i][j].push_back(0);
for(int k=j;k<=n;k+=i) b[i][j].push_back(a[k]);
maxv[i][j].assign((b[i][j].size()-1)<<2|1,0);
buildtree(i,j,1,1,b[i][j].size()-1);
}
for(int i=1;i<=m;++i)
{
scanf("%d%d%d",&op,&x0,&d);
if(!op)
{
a[x0]+=d;
for(int j=1;j<=lim;++j)//枚举公差
{
int bel=x0%j;
if(!bel) bel=j;//计算首项
int pos=x0/j;
if(bel!=j) ++pos;//计算pos是该等差数列的第几项
update(j,bel,pos,d,1,1,b[j][bel].size()-1);
}
}
else
{
if(d>lim)
{
int res=-INF;
for(int j=x0;j<=n;j+=d) res=max(res,a[j]);
printf("%d\n",res);
}
else
{
int bel=x0%d;
if(!bel) bel=d;
int sta=x0/d;
if(bel!=d) ++sta;
printf("%d\n",query(d,bel,sta,b[d][bel].size()-1,1,1,b[d][bel].size()-1));
}
}
}
return 0;
}
【线段树】bzoj3922 Karin的弹幕的更多相关文章
- BZOJ3922 Karin的弹幕 【线段树】
题目链接 BZOJ3922 题解 考虑暴力,修改\(O(1)\),查询\(O(\frac{n}{d})\) 考虑线段树,如果对每种差值建一棵线段树,修改\(O(nlogn)\),查询\(O(logn) ...
- bzoj3932--可持久化线段树
题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...
- codevs 1082 线段树练习 3(区间维护)
codevs 1082 线段树练习 3 时间限制: 3 s 空间限制: 128000 KB 题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...
- codevs 1576 最长上升子序列的线段树优化
题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...
- codevs 1080 线段树点修改
先来介绍一下线段树. 线段树是一个把线段,或者说一个区间储存在二叉树中.如图所示的就是一棵线段树,它维护一个区间的和. 蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这 ...
- codevs 1082 线段树区间求和
codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...
- PYOJ 44. 【HNSDFZ2016 #6】可持久化线段树
#44. [HNSDFZ2016 #6]可持久化线段树 统计 描述 提交 自定义测试 题目描述 现有一序列 AA.您需要写一棵可持久化线段树,以实现如下操作: A v p x:对于版本v的序列,给 A ...
- CF719E(线段树+矩阵快速幂)
题意:给你一个数列a,a[i]表示斐波那契数列的下标为a[i],求区间对应斐波那契数列数字的和,还要求能够维护对区间内所有下标加d的操作 分析:线段树 线段树的每个节点表示(f[i],f[i-1])这 ...
- 【BZOJ-3779】重组病毒 LinkCutTree + 线段树 + DFS序
3779: 重组病毒 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 224 Solved: 95[Submit][Status][Discuss] ...
随机推荐
- Vim使用小记(二)插件管理
By francis_hao Mar 8,2017 Vundle Vundle,全称为Vim bundle,是一个插件管理器.可以对vim插件进行安装和卸载. Vundle的安装方法看这里[参考 ...
- MySQL DELAY_KEY_WRITE Option
delay_key_write This option applies only to MyISAM tables. It can have one of the following values ...
- codevs 1078 最小生成树 kruskal
题目描述 Description 农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场.当然,他需要你的帮助. 约翰已经给他的农场安排了一条高速的网络线路,他想把这 ...
- NOIP2016愤怒的小鸟 [状压dp]
愤怒的小鸟 题目描述 Kiana 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 (0,0) 处,每次 Kiana 可以用它向第一象限发射一只红色的小鸟, ...
- ng的ngModel用来处理表单操作
https://segmentfault.com/a/1190000009126012
- poj 2312 Battle City(优先队列+bfs)
题目链接:http://poj.org/problem?id=2312 题目大意:给出一个n*m的矩阵,其中Y是起点,T是终点,B和E可以走,S和R不可以走,要注意的是走B需要2分钟,走E需要一分钟. ...
- [转]如何整理Linux磁盘碎片,竟与Windows的方式大不同 返回操作系统首页
Linux 系统永远不需要整理磁盘碎片的神话相信很多人都听说过.由于 Linux 采用了优秀的日志文件系统(ext2.ext3.ext4, btrfs等),在绝大多数情况下确实是不需要进行磁盘碎片整理 ...
- Python 本地线程
1. 本地线程,保证即使是多个线程,自己的值也是互相隔离. 2.普通对象演示 import threading import time class A(): pass a=A() def func(n ...
- oracle创建用户赋予权限,删除权限
--删除用户及及用户下的所有数据 drop user xxx cascade; --创建用户赋予密码 ; --赋予权限 grant dba to xxx; --删除权限 revoke dba from ...
- MySQL 基础内容
创建数据库 对于表的操作需要先进入库 use 库名: -- 创建一个名为 inana_db 的数据库,数据库字符编码指定为 utf8create database inana_db character ...