引用题解:

最大流+费用流。
第一问最大流即可。
第二问为“最小费用最大流”。
由题意,这一问的可转化为在上一问的“残量网络”上,扩大一些边的容量,使能从新的图中的最大流为k。
那么易得:对于还有剩余流量的边,走过他们的费用为0。而“增加流量”可变为:对残留网络上的每一条边建一条容量是∞费用是w的边。这表示从这些边走,每一流量的费用为w,这就符合题意了。
最后建一个超级源点,从超级源向1建一条容量为k,费用为0的边,就可进行最小费用最大流算法
 
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
#define MAXN 1011
#define MAXM 25001
#define INF 2147483647
int S,T,n,m,A[5001],B[5001],W1,Goal;
int en,u[MAXM],W2[5001],v[MAXM],first[MAXN],next[MAXM],cap[MAXM],cost[MAXM];//Next Array
bool inq[MAXN];
int d[MAXN]/*spfa*/,p[MAXN]/*spfa*/,a[MAXN]/*可改进量*/;
queue<int>q;
void Init_MCMF(){memset(first,-1,sizeof(first));en=0;S=1;T=n;}
void AddEdge(const int &U,const int &V,const int &W,const int &C)
{u[en]=U; v[en]=V; cap[en]=W; cost[en]=C; next[en]=first[U]; first[U]=en++;
u[en]=V; v[en]=U; cost[en]=-C; next[en]=first[V]; first[V]=en++;}
bool Spfa(int &Flow,int &Cost)
{
memset(d,0x7f,sizeof(d));
memset(inq,0,sizeof(inq));
d[S]=0; inq[S]=1; p[S]=0; a[S]=INF; q.push(S);
while(!q.empty())
{
int U=q.front(); q.pop(); inq[U]=0;
for(int i=first[U];i!=-1;i=next[i])
if(cap[i] && d[v[i]]>d[U]+cost[i])
{
d[v[i]]=d[U]+cost[i];
p[v[i]]=i;
a[v[i]]=min(a[U],cap[i]);
if(!inq[v[i]]) {q.push(v[i]); inq[v[i]]=1;}
}
}
if(d[T]>2100000000) return 0;
Flow+=a[T]; Cost+=d[T]*a[T]; int U=T;
while(U!=S)
{
cap[p[U]]-=a[T]; cap[p[U]^1]+=a[T];
U=u[p[U]];
}
return 1;
}
int Flow,Cost;
int Mincost()
{
Flow=0,Cost=0;
while(Spfa(Flow,Cost));
}
int main()
{
scanf("%d%d%d",&n,&m,&Goal);
Init_MCMF();
for(int i=1;i<=m;++i)
{
scanf("%d%d%d%d",&A[i],&B[i],&W1,&W2[i]);
AddEdge(A[i],B[i],W1,0);
}
Mincost(); printf("%d ",Flow);
for(int i=1;i<=m;++i) AddEdge(A[i],B[i],INF,W2[i]);
S=0; AddEdge(S,1,Goal,0);
Mincost(); printf("%d\n",Cost);
return 0;
}

  

【最大流】【费用流】bzoj1834 [ZJOI2010]network 网络扩容的更多相关文章

  1. BZOJ1834 [ZJOI2010]network 网络扩容 【最大流,费用流】

    1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec  Memory Limit: 64 MB Submit: 3394  Solved: 1774 [Subm ...

  2. [BZOJ1834][ZJOI2010]network 网络扩容 最大流+费用流

    1834: [ZJOI2010]network 网络扩容 Time Limit: 3 Sec  Memory Limit: 64 MB Submit: 3330  Solved: 1739 [Subm ...

  3. bzoj1834: [ZJOI2010]network 网络扩容 费用流

    bzoj1834 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的情况下,1到N的最大流: 2.将1到N的最大流增加K所需的最小扩容 ...

  4. 2018.10.13 bzoj1834: [ZJOI2010]network 网络扩容(最大流+费用流)

    传送门 网络流水题啊. 第一问直接放心跑最大流(本来还以为有什么tricktricktrick). 第二问就直接把原来的边(u,v,c,w)(u,v,c,w)(u,v,c,w)变成(u,v,c,0)( ...

  5. 【费用流】bzoj1834: [ZJOI2010]network 网络扩容

    还是稍微记一下这个拆点模型吧 Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求:  1.在不扩容的情况下,1到N的最大流:  ...

  6. bzoj1834 [ZJOI2010]network 网络扩容

    第一问跑最大流,第二问新建一条边连接0和1,流量为上第一问的答案+k,费用为0,接下来图中每条边拆成两条边,第一条容量为C费用为0,第二条容量无穷费用为W,再跑一遍费用流即可. 代码 #include ...

  7. BZOJ1834 [ZJOI2010]network 网络扩容(最小费用最大流)

    挺直白的构图..最小费用最大流的定义. #include<cstdio> #include<cstring> #include<queue> #include< ...

  8. 【BZOJ1834】[ZJOI2010]network 网络扩容 最大流+最小费用流

    [BZOJ1834][ZJOI2010]network 网络扩容 Description 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用.求: 1. 在不 ...

  9. BZOJ 1834: [ZJOI2010]network 网络扩容(最大流+最小费用最大流)

    第一问直接跑最大流.然后将所有边再加一次,费用为扩容费用,容量为k,再从一个超级源点连一条容量为k,费用为0的边到原源点,从原汇点连一条同样的边到超级汇点,然  后跑最小费用最大流就OK了. ---- ...

随机推荐

  1. Codeforces Round #510 (Div. 2) D. Petya and Array(树状数组)

    D. Petya and Array 题目链接:https://codeforces.com/contest/1042/problem/D 题意: 给出n个数,问一共有多少个区间,满足区间和小于t. ...

  2. POJ3189:Steady Cow Assignment(二分+二分图多重匹配)

    Steady Cow Assignment Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7482   Accepted: ...

  3. delegate, event - 里面涉及的参数类型必须完全一致,子类是不行的

    public void TestF() { Test += Fun; } public void Fun(Person p) { }  // 如 Person变成 SubPerson,则报错..pub ...

  4. PHP 抽象类,接口,抽象方法,静态方法

    1.Abstract class(抽象类) 抽象类是指在 class 前加了 abstract 关键字且存在抽象方法(在类方法 function 关键字前加了 abstract 关键字)的类. 抽象类 ...

  5. JS 中 call 和 apply 的理解和使用

    本文受到了知乎问题 如何理解和熟练运用js中的call及apply? 的启发. obj.call(thisObj, arg1, arg2, ...); obj.apply(thisObj, [arg1 ...

  6. Spring - IoC(7): 延迟实例化

    默认情况下,Spring IoC 容器启动后,在初始化过程中,会以单例模式创建并配置所有使用 singleton 定义的 Bean 的实例.通常情况下,提前实例化 Bean 是可取的,因为这样在配置中 ...

  7. jstack 堆栈日志分析

    一.线程的状态 线程间的状态转换:  1. 新建(new):新创建了一个线程对象. 2. 可运行(runnable):线程对象创建后,其他线程(比如main线程)调用了该对象的start()方法.该状 ...

  8. codeforce C. Okabe and Boxes

    题目传送门 这道题 每次删除一个点 那么这个点必然在栈里面 那么如果堆顶不是他 我们就需要一次操作使得堆合理 这时我们可以把他删除然后把他下面的点打个标记表示这下面的点以后想怎么排就怎么排以后都不需要 ...

  9. django2.0的reverse

    导入: 官方文档地址:https://yiyibooks.cn/xx/Django_1.11.6/topics/http/urls.html from django.urls import rever ...

  10. HDU2819(二分图匹配,记录过程)

    Swap Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...