poj3308 Paratroopers
Description
It is year 2500 A.D. and there is a terrible war between the forces of the Earth and the Mars. Recently, the commanders of the Earth are informed by their spies that the invaders of Mars want to land some paratroopers in the m × n grid yard of one their main weapon factories in order to destroy it. In addition, the spies informed them the row and column of the places in the yard in which each paratrooper will land. Since the paratroopers are very strong and well-organized, even one of them, if survived, can complete the mission and destroy the whole factory. As a result, the defense force of the Earth must kill all of them simultaneously after their landing.
In order to accomplish this task, the defense force wants to utilize some of their most hi-tech laser guns. They can install a gun on a row (resp. column) and by firing this gun all paratroopers landed in this row (resp. column) will die. The cost of installing a gun in the ith row (resp. column) of the grid yard is ri (resp. ci ) and the total cost of constructing a system firing all guns simultaneously is equal to the product of their costs. Now, your team as a high rank defense group must select the guns that can kill all paratroopers and yield minimum total cost of constructing the firing system.
Input
Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing three integers 1 ≤ m ≤ 50 , 1 ≤ n ≤ 50 and 1 ≤ l ≤ 500 showing the number of rows and columns of the yard and the number of paratroopers respectively. After that, a line with m positive real numbers greater or equal to 1.0 comes where the ith number is ri and then, a line with n positive real numbers greater or equal to 1.0 comes where the ith number is ci. Finally, l lines come each containing the row and column of a paratrooper.
Output
For each test case, your program must output the minimum total cost of constructing the firing system rounded to four digits after the fraction point.
Sample Input
1
4 4 5
2.0 7.0 5.0 2.0
1.5 2.0 2.0 8.0
1 1
2 2
3 3
4 4
1 4
Sample Output
16.0000
题解:
最小点权覆盖,最小割模型,可以用最大流去做,然后就是板子题,重点是转换过程,
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#define inf 0x3f3f
#define ll long long
#define MAXN 30000
using namespace std;
int n,m;//点数、边数
int X[MAXN],y[MAXN];
int sp,tp;//原点、汇点
struct node
{
int v,next;
double cap;
}mp[MAXN*10];
int pre[MAXN],dis[MAXN],cur[MAXN];//cur为当前弧优化,dis存储分层图中每个点的层数(即到原点的最短距离),pre建邻接表
int cnt=0;
void init()//不要忘记初始化
{
cnt=0;
memset(pre,-1,sizeof(pre));
}
void add(int u,int v,double w)//加边
{
mp[cnt].v=v;
mp[cnt].cap=w;
mp[cnt].next=pre[u];
pre[u]=cnt++;
mp[cnt].v=u;
mp[cnt].cap=0;
mp[cnt].next=pre[v];
pre[v]=cnt++;
} bool bfs()//建分层图
{
memset(dis,-1,sizeof(dis));
queue<int>q;
while(!q.empty())
q.pop();
q.push(sp);
dis[sp]=0;
int u,v;
while(!q.empty())
{
u=q.front();
q.pop();
for(int i=pre[u];i!=-1;i=mp[i].next)
{
v=mp[i].v;
if(dis[v]==-1&&mp[i].cap>0)
{
dis[v]=dis[u]+1;
q.push(v);
if(v==tp)
break;
}
}
}
return dis[tp]!=-1;
} double dfs(int u,double cap)//寻找增广路
{
if(u==tp||cap==0)
return cap;
double res=0,f;
for(int i=cur[u];i!=-1;i=mp[i].next)
{
int v=mp[i].v;
if(dis[v]==dis[u]+1&&(f=dfs(v,min(cap-res,mp[i].cap)))>0)
{
mp[i].cap-=f;
mp[i^1].cap+=f;
res+=f;
if(res==cap)
return cap;
}
}
if(!res)
dis[u]=-1;
return res;
} double dinic()
{
double ans=0;
while(bfs())
{
for(int i=0;i<=tp;i++)
cur[i]=pre[i];
ans+=dfs(sp,inf);
}
return ans;
}
int main()
{ int _;
scanf("%d",&_);
int l;
while(_--) {
init();
int len=0;
scanf("%d%d%d",&n,&m,&len);
sp=0;tp=n+m+1;
memset(pre,-1,sizeof pre);
cnt=0;
double w;
for (int i = 1; i <=n ; ++i) {
scanf("%lf",&w);
add(sp,i,log(w));
}
for (int i = 1; i <=m ; ++i) {
scanf("%lf",&w);
add(n+i,tp ,log(w));
}
int a,b;
for (int i = 0; i <len ; ++i) {
scanf("%d%d",&a,&b);
add(a,b+n,inf);
} double kk=dinic();
printf("%.4f\n",exp(kk));
}
return 0;
}
poj3308 Paratroopers的更多相关文章
- POJ3308 Paratroopers(网络流)(最小割)
Paratroopers Time Limit: 1000MS Memory Limit: 655 ...
- POJ3308 Paratroopers(最小割/二分图最小点权覆盖)
把入侵者看作边,每一行每一列都是点,选取某一行某一列都有费用,这样问题就是选总权最小的点集覆盖所有边,就是最小点权覆盖. 此外,题目的总花费是所有费用的乘积,这时有个技巧,就是取对数,把乘法变为加法运 ...
- poj3308 Paratroopers --- 最小点权覆盖->最小割
题目是一个非常明显的二分图带权匹配模型, 加入源点到nx建边,ny到汇点建边,(nx.ny)=inf建边.求最小割既得最小点权覆盖. 在本题中因为求的是乘积,所以先所有取log转换为加法,最后再乘方回 ...
- poj3308 Paratroopers 最大流 最小点权覆盖
题意:有一个n*m的矩阵,告诉了在每一行或者每一列安装大炮的代价,每一个大炮可以瞬间消灭这一行或者这一列的所有敌人,然后告诉了敌人可能出现的L个坐标位置,问如何安置大炮,使花费最小.如果一个敌人位于第 ...
- Paratroopers
Paratroopers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7881 Accepted: 2373 Descript ...
- POJ 3308 Paratroopers(最小割EK(邻接表&矩阵))
Description It is year 2500 A.D. and there is a terrible war between the forces of the Earth and the ...
- 伞兵(Paratroopers)
伞兵(Paratroopers) 时间限制: 1 Sec 内存限制: 128 MB 题目描述 公元 2500 年,地球和火星之间爆发了一场战争.最近,地球军队指挥官获悉火星入侵者将派一些伞兵来摧毁地 ...
- POJ 3308 Paratroopers 最大流,乘积化和 难度:2
Paratroopers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7267 Accepted: 2194 Desc ...
- POJ 3308 Paratroopers(最小点权覆盖)(对数乘转加)
http://poj.org/problem?id=3308 r*c的地图 每一个大炮可以消灭一行一列的敌人 安装消灭第i行的大炮花费是ri 安装消灭第j行的大炮花费是ci 已知敌人坐标,同时消灭所有 ...
随机推荐
- js alert 封装 layui
方式一: var aaa = function(){ function _alert(aa){ layer.msg(aa, { time: 2000, //2s后自动关闭 alert("最高 ...
- 长大Tips
队名:CW 队员: B20150304403 王香辉 B20150304408 李孟君 B20150304411 曾翡 B20150304414 吴海波 B20150304430 文淼 B201503 ...
- Git的认识与学习
第一部分:我的git地址是https://github.com/monkeyDyang 第二部分:我对git的认识 Git是一种良好的.支持分支管理的代码管理方式,能很好地解决团队之间协作的问题.每个 ...
- Docker镜像提交命令commit的工作原理和使用方法
在本地创建一个容器后,可以依据这个容器创建本地镜像,并可把这个镜像推送到Docker hub中,以便在网络上下载使用. 下面我们来动手实践. docker pull nginx:1.15.3 用命令行 ...
- 通过一个例子学习Kubernetes里的PersistentVolumeClaim的用法
Kubernetes的pod本身是无状态的(stateless),生命周期通常比较短,只要出现了异常,Kubernetes就会自动创建一个新的Pod来代替它. 而容器产生的数据,会随着Pod消亡而自动 ...
- ftp免交互上传文件脚本
ftp -i -n <<! open .x.x.x user yourFtpAccount yourPasswd cd /root/DailyBuild/webapps/ delete x ...
- 解决adb devices无法连接夜神模拟器
打开命令cmdadb connect 127.0.0.1:62001
- 【洛谷P1288】取数游戏II
取数游戏II 题目链接 显然,由于一定有一个0,我们可以求出从初始点到0的链的长度 若有一条链长为奇数,则先手可以每次取完一条边上所有的数, 后手只能取另一条边的数,先手必胜: 反之若没有奇数链,后手 ...
- LeetCode14.最长公共前缀 JavaScript
编写一个函数来查找字符串数组中的最长公共前缀. 如果不存在公共前缀,返回空字符串 "". 示例 1: 输入: ["flower","flow" ...
- 在Oracle中计算两个日期间隔的天数、月数和年数
一.天数: 在Oracle中,两个日期直接相减,便可以得到天数: select to_date('08/06/2015','mm/dd/yyyy')-to_date('07/01/2015','mm/ ...