poj3308 Paratroopers
Description
It is year 2500 A.D. and there is a terrible war between the forces of the Earth and the Mars. Recently, the commanders of the Earth are informed by their spies that the invaders of Mars want to land some paratroopers in the m × n grid yard of one their main weapon factories in order to destroy it. In addition, the spies informed them the row and column of the places in the yard in which each paratrooper will land. Since the paratroopers are very strong and well-organized, even one of them, if survived, can complete the mission and destroy the whole factory. As a result, the defense force of the Earth must kill all of them simultaneously after their landing.
In order to accomplish this task, the defense force wants to utilize some of their most hi-tech laser guns. They can install a gun on a row (resp. column) and by firing this gun all paratroopers landed in this row (resp. column) will die. The cost of installing a gun in the ith row (resp. column) of the grid yard is ri (resp. ci ) and the total cost of constructing a system firing all guns simultaneously is equal to the product of their costs. Now, your team as a high rank defense group must select the guns that can kill all paratroopers and yield minimum total cost of constructing the firing system.
Input
Input begins with a number T showing the number of test cases and then, T test cases follow. Each test case begins with a line containing three integers 1 ≤ m ≤ 50 , 1 ≤ n ≤ 50 and 1 ≤ l ≤ 500 showing the number of rows and columns of the yard and the number of paratroopers respectively. After that, a line with m positive real numbers greater or equal to 1.0 comes where the ith number is ri and then, a line with n positive real numbers greater or equal to 1.0 comes where the ith number is ci. Finally, l lines come each containing the row and column of a paratrooper.
Output
For each test case, your program must output the minimum total cost of constructing the firing system rounded to four digits after the fraction point.
Sample Input
1
4 4 5
2.0 7.0 5.0 2.0
1.5 2.0 2.0 8.0
1 1
2 2
3 3
4 4
1 4
Sample Output
16.0000
题解:
最小点权覆盖,最小割模型,可以用最大流去做,然后就是板子题,重点是转换过程,
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#define inf 0x3f3f
#define ll long long
#define MAXN 30000
using namespace std;
int n,m;//点数、边数
int X[MAXN],y[MAXN];
int sp,tp;//原点、汇点
struct node
{
int v,next;
double cap;
}mp[MAXN*10];
int pre[MAXN],dis[MAXN],cur[MAXN];//cur为当前弧优化,dis存储分层图中每个点的层数(即到原点的最短距离),pre建邻接表
int cnt=0;
void init()//不要忘记初始化
{
cnt=0;
memset(pre,-1,sizeof(pre));
}
void add(int u,int v,double w)//加边
{
mp[cnt].v=v;
mp[cnt].cap=w;
mp[cnt].next=pre[u];
pre[u]=cnt++;
mp[cnt].v=u;
mp[cnt].cap=0;
mp[cnt].next=pre[v];
pre[v]=cnt++;
} bool bfs()//建分层图
{
memset(dis,-1,sizeof(dis));
queue<int>q;
while(!q.empty())
q.pop();
q.push(sp);
dis[sp]=0;
int u,v;
while(!q.empty())
{
u=q.front();
q.pop();
for(int i=pre[u];i!=-1;i=mp[i].next)
{
v=mp[i].v;
if(dis[v]==-1&&mp[i].cap>0)
{
dis[v]=dis[u]+1;
q.push(v);
if(v==tp)
break;
}
}
}
return dis[tp]!=-1;
} double dfs(int u,double cap)//寻找增广路
{
if(u==tp||cap==0)
return cap;
double res=0,f;
for(int i=cur[u];i!=-1;i=mp[i].next)
{
int v=mp[i].v;
if(dis[v]==dis[u]+1&&(f=dfs(v,min(cap-res,mp[i].cap)))>0)
{
mp[i].cap-=f;
mp[i^1].cap+=f;
res+=f;
if(res==cap)
return cap;
}
}
if(!res)
dis[u]=-1;
return res;
} double dinic()
{
double ans=0;
while(bfs())
{
for(int i=0;i<=tp;i++)
cur[i]=pre[i];
ans+=dfs(sp,inf);
}
return ans;
}
int main()
{ int _;
scanf("%d",&_);
int l;
while(_--) {
init();
int len=0;
scanf("%d%d%d",&n,&m,&len);
sp=0;tp=n+m+1;
memset(pre,-1,sizeof pre);
cnt=0;
double w;
for (int i = 1; i <=n ; ++i) {
scanf("%lf",&w);
add(sp,i,log(w));
}
for (int i = 1; i <=m ; ++i) {
scanf("%lf",&w);
add(n+i,tp ,log(w));
}
int a,b;
for (int i = 0; i <len ; ++i) {
scanf("%d%d",&a,&b);
add(a,b+n,inf);
} double kk=dinic();
printf("%.4f\n",exp(kk));
}
return 0;
}
poj3308 Paratroopers的更多相关文章
- POJ3308 Paratroopers(网络流)(最小割)
Paratroopers Time Limit: 1000MS Memory Limit: 655 ...
- POJ3308 Paratroopers(最小割/二分图最小点权覆盖)
把入侵者看作边,每一行每一列都是点,选取某一行某一列都有费用,这样问题就是选总权最小的点集覆盖所有边,就是最小点权覆盖. 此外,题目的总花费是所有费用的乘积,这时有个技巧,就是取对数,把乘法变为加法运 ...
- poj3308 Paratroopers --- 最小点权覆盖->最小割
题目是一个非常明显的二分图带权匹配模型, 加入源点到nx建边,ny到汇点建边,(nx.ny)=inf建边.求最小割既得最小点权覆盖. 在本题中因为求的是乘积,所以先所有取log转换为加法,最后再乘方回 ...
- poj3308 Paratroopers 最大流 最小点权覆盖
题意:有一个n*m的矩阵,告诉了在每一行或者每一列安装大炮的代价,每一个大炮可以瞬间消灭这一行或者这一列的所有敌人,然后告诉了敌人可能出现的L个坐标位置,问如何安置大炮,使花费最小.如果一个敌人位于第 ...
- Paratroopers
Paratroopers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7881 Accepted: 2373 Descript ...
- POJ 3308 Paratroopers(最小割EK(邻接表&矩阵))
Description It is year 2500 A.D. and there is a terrible war between the forces of the Earth and the ...
- 伞兵(Paratroopers)
伞兵(Paratroopers) 时间限制: 1 Sec 内存限制: 128 MB 题目描述 公元 2500 年,地球和火星之间爆发了一场战争.最近,地球军队指挥官获悉火星入侵者将派一些伞兵来摧毁地 ...
- POJ 3308 Paratroopers 最大流,乘积化和 难度:2
Paratroopers Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7267 Accepted: 2194 Desc ...
- POJ 3308 Paratroopers(最小点权覆盖)(对数乘转加)
http://poj.org/problem?id=3308 r*c的地图 每一个大炮可以消灭一行一列的敌人 安装消灭第i行的大炮花费是ri 安装消灭第j行的大炮花费是ci 已知敌人坐标,同时消灭所有 ...
随机推荐
- Vue项目中引入ElementUI
前提:创建好的vue项目. 1.安装ElementUI 转到项目根目录,输入命令:#cnpm install element-ui --save-dev 2.在 main.js 引入并注册 impor ...
- Smokeping配置调整
smokeping两种邮件报警方式 一 .自带sendmail报警 修改这两句话to = 收件邮箱,多个逗号分隔from = smokealert@本机IP /usr/local/smokeping/ ...
- mysql的安装和使用
1.下载 数据库:mysql-3.23.53-win1 可视化工具:mysqlcc-0.9.4-win32 2.步骤: (1)解压mysql-3.23.53-win1(其他的也可以),按照步骤安装到你 ...
- asp.net反射的运用
反射的用途: (1)使用Assembly定义和加载程序集,加载在程序集清单中列出模块,以及从此程序集中查找类型并创建该类型的实例. (2)使用Module了解包含模块的程序集以及模块中的 ...
- 使用strtus2框架的json插件来完成ajax操作
------------------------------------------------------------------------------jsp------------------- ...
- 机器学习基础(HGL的机器学习笔记1)
统计学习:统计学习是关于计算机基于数据构建概率统计模型并运用模型对数据进行预测与分析的一门学科,统计学习也成为统计机器人学习[1]. 统计学习分类:有监督学习与无监督学习[2]. 统计学习三要素:模型 ...
- js学习笔记-数字转罗马数字
function convert(num) { var ans = ""; var k = Math.floor(num / 1000); var h = ...
- Rest API 开发 学习笔记
概述 REST 从资源的角度来观察整个网络,分布在各处的资源由URI确定,而客户端的应用通过URI来获取资源的表示方式.获得这些表徵致使这些应用程序转变了其状态.随着不断获取资源的表示方式,客户端应用 ...
- centOS 7 更改root密码
Linux忘记密码怎么办,不用重装系统,进入emergency mode 更改root密码即可. 首先重启系统,按下 向下 按钮, 定位在第一个,摁 e ,进行编辑 找到 ro , 把ro改为 rw ...
- AngularJS 一 简介以及安装环境
AngularJS官网:https://angularjs.org AngularJS是开发动态Web应用程序的客户端JavaScript MVC框架.AngularJS最初是作为Google的一个项 ...