Chinese Rings

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 896    Accepted Submission(s): 520

Problem Description
Dumbear likes to play the Chinese Rings (Baguenaudier). It’s a game played with nine rings on a bar. The rules of this game are very simple: At first, the nine rings are all on the bar.
The first ring can be taken off or taken on with one step.
If the first k rings are all off and the (k + 1)th ring is on, then the (k + 2)th ring can be taken off or taken on with one step. (0 ≤ k ≤ 7)

Now consider a game with N (N ≤ 1,000,000,000) rings on a bar, Dumbear wants to make all the rings off the bar with least steps. But Dumbear is very dumb, so he wants you to help him.

 
Input
Each line of the input file contains a number N indicates the number of the rings on the bar. The last line of the input file contains a number "0".
 
Output
For each line, output an integer S indicates the least steps. For the integers may be very large, output S mod 200907.
 
Sample Input
1
4
0
 
Sample Output
1
10
 
Source
题意:
棍上有n个环,第一个环可以随时拿下或放上,只有在前k-2个环拿下了,第k-1个环在棍上才能拿下或放上第k个环,问把环全部拿下的最少步数。每拿下一个环或放上一个环用一步。
代码:
 /*
当环多于3个时,必然要先拿走最后一个,要想拿走最后一个就要先拿走前n-2个也就是需要f(n-2)步,然后才能
拿走最后一个,然后再把前n-2个加上又是f(n-2)步,才能继续拿,然后就是要算拿走n-1个环的步数,因此
递推公式:f(n)=f(n-2)+1+f(n-2)+f(n-1).然后构造矩阵,快速幂. 1 0 0^n-2 * 1
1 1 2 f(n-1)
0 1 0 f(n-2)
*/
#include<iostream>
using namespace std;
const int mod=;
struct Lu
{
long long A[][]; // long long
}L;
void init()
{
L.A[][]=L.A[][]=L.A[][]=L.A[][]=;
L.A[][]=L.A[][]=L.A[][]=L.A[][]=;
L.A[][]=;
}
Lu multi(Lu x,Lu y)
{
Lu z;
for(int i=;i<;i++)
for(int j=;j<;j++){
z.A[i][j]=;
for(int k=;k<;k++){
z.A[i][j]+=x.A[i][k]*y.A[k][j];
z.A[i][j]%=mod;
}
}
return z;
}
Lu solve(int x)
{
if(x==) return L;
if(x&){
Lu p=solve(x-);
return multi(p,L);
}
else {
Lu p=solve(x/);
return multi(p,p);
}
}
int main()
{
int n;
while(cin>>n&&n){
if(n==){
cout<<<<endl;
continue;
}
else if(n==){
cout<<<<endl;
continue;
}
init();
L=solve(n-);
int ans=(L.A[][]*)%mod+(L.A[][]*)%mod+(L.A[][]*)%mod;
cout<<ans%mod<<endl;
}
return ;
}

HDU2842 矩阵乘法的更多相关文章

  1. *HDU2254 矩阵乘法

    奥运 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submissi ...

  2. *HDU 1757 矩阵乘法

    A Simple Math Problem Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

  3. CH Round #30 摆花[矩阵乘法]

    摆花 CH Round #30 - 清明欢乐赛 背景及描述 艺术馆门前将摆出许多花,一共有n个位置排成一排,每个位置可以摆花也可以不摆花.有些花如果摆在相邻的位置(隔着一个空的位置不算相邻),就不好看 ...

  4. POJ3070 Fibonacci[矩阵乘法]

    Fibonacci Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13677   Accepted: 9697 Descri ...

  5. bzoj 2738 矩阵乘法

    其实这题跟矩阵乘法没有任何卵关系,直接整体二分,用二维树状数组维护(刚刚学会>_<),复杂度好像有点爆炸(好像有十几亿不知道是不是算错了),但我们不能怂啊23333. #include&l ...

  6. 【BZOJ-2476】战场的数目 矩阵乘法 + 递推

    2476: 战场的数目 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 58  Solved: 38[Submit][Status][Discuss] D ...

  7. 【BZOJ-1898】Swamp 沼泽鳄鱼 矩阵乘法

    1898: [Zjoi2005]Swamp 沼泽鳄鱼 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1012  Solved: 566[Submit][S ...

  8. 【Codeforces718C】Sasha and Array 线段树 + 矩阵乘法

    C. Sasha and Array time limit per test:5 seconds memory limit per test:256 megabytes input:standard ...

  9. 矩阵乘法的MapReduce实现

    对于任意矩阵M和N,若矩阵M的列数等于矩阵N的行数,则记M和N的乘积为P=M*N,其中mik 记做矩阵M的第i行和第k列,nkj记做矩阵N的第k行和第j列,则矩阵P中,第i行第j列的元素可表示为公式( ...

随机推荐

  1. Jquery获取select选中的文本与值

    jquery获取select选择的文本与值获取select :获取select 选中的 text :    $("#ddlregtype").find("option:s ...

  2. jquery mobile

    页面:data-role="page"  header.content.fooder 过渡:data-transition ="slide"  反向过渡:dat ...

  3. 整数转IP地址

    将一个整数,比如1567898765转换为xxx.xxx.xxx.xxx的IP地址的形式, 以下是源代码 union IPNode{ unsigned int addr; struct { unsig ...

  4. PermGen space

    MyEclipse内存空间不足,调整空间操作: 1.点击"Run"-"Run Configurations",在打开的窗口中点击"Arguments& ...

  5. dbca建库sys用户被锁

    奇怪问题:dbca建库sys用户被锁, 点击密码管理报账户被锁 而且在服务器上无法进行操作系统验证登陆,经过一番检查发现oracle用户和grid用户没有在dba组里 解决: 1.把oracle用户和 ...

  6. Linux下Keepalived+LVS-DR模式配置高可用负载均衡集群

    一.环境说明:     操作系统:Centos-6.5_x86_64    keepalived软件安装在node2和node3机器上.     实际安装之前,先关闭keepalived节点(node ...

  7. oracle is not in the sudoers file. This incident will be reported.

    准备把OS的root禁用了,所以其他用户要执行使用root执行的操作时,需要使用sudo. 在没有配置sudo的时候,执行sudo会出现类似以下的报错: [oracle@test ~]$ sudo / ...

  8. UWP Composition API - GroupListView(二)

    还是先上效果图: 看完了上一篇UWP Composition API - GroupListView(一)的童鞋会问,这不是跟上一篇一样的吗??? 骗点击的?? No,No,其实相对上一个有更简单粗暴 ...

  9. [翻译]Telnet简单介绍及在windows 7中开启Telnet客户端

    文章翻译自 http://social.technet.microsoft.com/wiki/contents/articles/910.windows-7-enabling-telnet-clien ...

  10. Youth -Samuel Ullman

    Samuel Ullman(塞缪尔.厄尔曼) Youth is not a time of life,it is a state of mind;青春不是年华,而是心境: it is not a ma ...