Haar-like feature和Haar wavelet
Haar-like features are digital image features used in object recognition. They owe their name to their intuitive similarity with Haar wavelets and were used in the first real-time face detector.[1]
Historically, working with only image intensities (i.e., the RGB pixel values at each and every pixel of image) made the task of feature calculation computationally expensive. A publication by Papageorgiou et al.[2] discussed working with an alternate feature set based on Haar wavelets instead of the usual image intensities. Viola and Jones[1] adapted the idea of using Haar wavelets and developed the so-called Haar-like features. A Haar-like feature considers adjacent rectangular regions at a specific location in a detection window, sums up the pixel intensities in each region and calculates the difference between these sums. This difference is then used to categorize subsections of an image. For example, let us say we have an image database with human faces. It is a common observation that among all faces the region of the eyes is darker than the region of the cheeks. Therefore a common Haar feature for face detection is a set of two adjacent rectangles that lie above the eye and the cheek region. The position of these rectangles is defined relative to a detection window that acts like a bounding box to the target object (the face in this case).
In the detection phase of the Viola–Jones object detection framework, a window of the target size is moved over the input image, and for each subsection of the image the Haar-like feature is calculated. This difference is then compared to a learned threshold that separates non-objects from objects. Because such a Haar-like feature is only a weak learner or classifier (its detection quality is slightly better than random guessing) a large number of Haar-like features are necessary to describe an object with sufficient accuracy. In the Viola–Jones object detection framework, the Haar-like features are therefore organized in something called a classifier cascade to form a strong learner or classifier.
The key advantage of a Haar-like feature over most other features is its calculation speed. Due to the use of integral images, a Haar-like feature of any size can be calculated in constant time (approximately 60 microprocessor instructions for a 2-rectangle feature).
Haar-like feature和Haar wavelet的更多相关文章
- 浅析人脸检测之Haar分类器方法:Haar特征、积分图、 AdaBoost 、级联
浅析人脸检测之Haar分类器方法 一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸 ...
- 浅析人脸检测之Haar分类器方法
一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发 ...
- Ello讲述Haar人脸检测:易懂、很详细、值得围观
源地址:http://www.thinkface.cn/thread-142-1-1.html 由于工作需要,我开始研究人脸检测部分的算法,这期间断断续续地学习Haar分类器的训练以及检测过程,在这里 ...
- 2、转载一篇,浅析人脸检测之Haar分类器方法
转载地址http://www.cnblogs.com/ello/archive/2012/04/28/2475419.html 浅析人脸检测之Haar分类器方法 [补充] 这是我时隔差不多两年后, ...
- haar特征(转)
转载链接:http://blog.csdn.net/lanxuecc/article/details/52222369 Haar特征 Haar特征原理综述 Haar特征是一种反映图像的灰度变化的,像素 ...
- Haar分类器方法
一.Haar分类器的前世今生 二.人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方 ...
- HAAR与DLib的实时人脸检测之实现与对比
人脸检测方法有许多,比如opencv自带的人脸Haar特征分类器和dlib人脸检测方法等. 对于opencv的人脸检测方法,优点是简单,快速:存在的问题是人脸检测效果不好.正面/垂直/光线较好的人脸, ...
- 第九节、人脸检测之Haar分类器
人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来. 目前人脸检测的方法主 ...
- 【图像处理】计算Haar特征个数
http://blog.csdn.net/xiaowei_cqu/article/details/8216109 Haar特征/矩形特征 Haar特征本身并不复杂,就是用图中黑色矩形所有像素值的和减去 ...
随机推荐
- Oracle视图编译错误解决办法
因为新搭的环境,数据库是从另一个现成的环境导过来的,直接后台用exp和imp命令操作.但是新环境的Oracle数据库有问题,一些视图创建不了,导致用到这些视图的视图和存储过程也编译不了.后来手工重新编 ...
- Yii框架的一些系统函数
Yii::app()->request->baseUrl 返回app所在目录,可以用来挂模板. var_dump(Yii::app()->db); 可以用来测试数据库配置成功否
- 蓝桥杯 算法训练 ALGO-108 最大的体积
算法训练 最大体积 时间限制:1.0s 内存限制:256.0MB 问题描述 每个物品有一定的体积(废话),不同的物品组合,装入背包会战用一定的总体积.假如每个物品有无限件可用,那么有些体积是永 ...
- Eclipse 模拟http 请求插件Rest Client
eclipse update 网址 http://nextinterfaces.com/http4e/install/ 参考 http://www.nextinterfaces.com/eclips ...
- Java 数组的三种创建方法,数组拷贝方法
public static void main(String[] args) {//创建数组的第一种方法int[] arr=new int[6];int intValue=arr[5];//Syste ...
- hardentools
Hardentools是一组简单的实用程序,旨在禁用操作系统(Microsoft Windows,现在)以及主要的消费者应用程序公开的许多“功能”.这些通常为企业客户所设想的功能,对于普通用户来说通 ...
- 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 5 Octave Tutorial
Lecture 5 Octave教程 5.1 基本操作 Basic Operations 5.2 移动数据 Moving Data Around 5.3 计算数据 Computing on Data ...
- ZooKeeper集群搭建过程
ZooKeeper集群搭建过程 提纲 1.ZooKeeper简介 2.ZooKeeper的下载和安装 3.部署3个节点的ZK伪分布式集群 3.1.解压ZooKeeper安装包 3.2.为每个节点建立d ...
- 如何在Less中使用使用calc
文章转载自 琼台博客:http://www.qttc.net/201409448.html Less的好处不用说大家都知道,确实让写CSS的人不在痛苦了,最近我在Less里加入calc时确发现了有点 ...
- SqlServer数据导入到ORACLE
ORACLE中执行 select * from SYSTEM."employ_epl"