Haar-like features are digital image features used in object recognition. They owe their name to their intuitive similarity with Haar wavelets and were used in the first real-time face detector.[1]

Historically, working with only image intensities (i.e., the RGB pixel values at each and every pixel of image) made the task of feature calculation computationally expensive. A publication by Papageorgiou et al.[2] discussed working with an alternate feature set based on Haar wavelets instead of the usual image intensities. Viola and Jones[1] adapted the idea of using Haar wavelets and developed the so-called Haar-like features. A Haar-like feature considers adjacent rectangular regions at a specific location in a detection window, sums up the pixel intensities in each region and calculates the difference between these sums. This difference is then used to categorize subsections of an image. For example, let us say we have an image database with human faces. It is a common observation that among all faces the region of the eyes is darker than the region of the cheeks. Therefore a common Haar feature for face detection is a set of two adjacent rectangles that lie above the eye and the cheek region. The position of these rectangles is defined relative to a detection window that acts like a bounding box to the target object (the face in this case).

In the detection phase of the Viola–Jones object detection framework, a window of the target size is moved over the input image, and for each subsection of the image the Haar-like feature is calculated. This difference is then compared to a learned threshold that separates non-objects from objects. Because such a Haar-like feature is only a weak learner or classifier (its detection quality is slightly better than random guessing) a large number of Haar-like features are necessary to describe an object with sufficient accuracy. In the Viola–Jones object detection framework, the Haar-like features are therefore organized in something called a classifier cascade to form a strong learner or classifier.

The key advantage of a Haar-like feature over most other features is its calculation speed. Due to the use of integral images, a Haar-like feature of any size can be calculated in constant time (approximately 60 microprocessor instructions for a 2-rectangle feature).

Haar-like feature和Haar wavelet的更多相关文章

  1. 浅析人脸检测之Haar分类器方法:Haar特征、积分图、 AdaBoost 、级联

    浅析人脸检测之Haar分类器方法 一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸 ...

  2. 浅析人脸检测之Haar分类器方法

    一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发 ...

  3. Ello讲述Haar人脸检测:易懂、很详细、值得围观

    源地址:http://www.thinkface.cn/thread-142-1-1.html 由于工作需要,我开始研究人脸检测部分的算法,这期间断断续续地学习Haar分类器的训练以及检测过程,在这里 ...

  4. 2、转载一篇,浅析人脸检测之Haar分类器方法

    转载地址http://www.cnblogs.com/ello/archive/2012/04/28/2475419.html 浅析人脸检测之Haar分类器方法  [补充] 这是我时隔差不多两年后, ...

  5. haar特征(转)

    转载链接:http://blog.csdn.net/lanxuecc/article/details/52222369 Haar特征 Haar特征原理综述 Haar特征是一种反映图像的灰度变化的,像素 ...

  6. Haar分类器方法

    一.Haar分类器的前世今生 二.人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方 ...

  7. HAAR与DLib的实时人脸检测之实现与对比

    人脸检测方法有许多,比如opencv自带的人脸Haar特征分类器和dlib人脸检测方法等. 对于opencv的人脸检测方法,优点是简单,快速:存在的问题是人脸检测效果不好.正面/垂直/光线较好的人脸, ...

  8. 第九节、人脸检测之Haar分类器

    人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来. 目前人脸检测的方法主 ...

  9. 【图像处理】计算Haar特征个数

    http://blog.csdn.net/xiaowei_cqu/article/details/8216109 Haar特征/矩形特征 Haar特征本身并不复杂,就是用图中黑色矩形所有像素值的和减去 ...

随机推荐

  1. curl -I 说明

    curl -I 查看header头信息

  2. 第三方引擎应用场景分析--Tokudb,infobright

    TokuDBTokuDB的特色:• Fractal Tree而不是B-Tree• 内部结点不仅有指向父子的指针还有Buffer区,数据写入先写buffer区,FIFO结构,写入只需要顺序添加到Buff ...

  3. Windows Media Player 打不开怎么办

    1. 右键VS工具箱的空白处; 2. 打开工具箱, 选择com组件→找到windows media player 3. 如果这里没有发现 windows Media Player怎么办? , 以win ...

  4. Linux学习笔记 -- 系统目录结构

    以root用户登录系统后,在当前命令窗口下输入命令: ls / 我们可以看到目录结构类似下图: 树状目录结构可以表示为: 解析: /bin:bin是Binary的缩写, 这个目录存放着最经常使用的命令 ...

  5. 第五章 深入class文件结构

    一次编译好的class文件是如何到处运行的 5.1 JVM指令集简介 5.1.1 与类相关的指令 5.1.2 方法的定义 5.1.3 属性的定义 5.1.4 其他指令集 5.2 class文件头的表示 ...

  6. Linux Restricted Shell Bypass

    Author: @n4ckhcker & @h4d3sw0rm Introduction Hello, so first of all let’s explain what is a rest ...

  7. ORACLE和MYSQL函数

    函数 编号 类别 ORACLE MYSQL 注释 1 数字函数 round(1.23456,4) round(1.23456,4) 一样: ORACLE:select round(1.23456,4) ...

  8. PHP开发环境正确的错误信息处理

    正确记录配置 php.ini display_errors = On error_reporting = E_ALL log_errors = On error_log = F:/data/php/e ...

  9. day1--心得

    info = ''' --------------------info of %s---------------- name: %s age: %s job: %s ----------------- ...

  10. 【原】Zookeeper 概述 + 官网 Overview 翻译

    分布式应用 分布式应用 distributed application可以在给定时间(同时)在网络中的多个系统上运行,通过协调它们以快速有效的方式完成特定任务. (a), (b): a distrib ...