Haar-like features are digital image features used in object recognition. They owe their name to their intuitive similarity with Haar wavelets and were used in the first real-time face detector.[1]

Historically, working with only image intensities (i.e., the RGB pixel values at each and every pixel of image) made the task of feature calculation computationally expensive. A publication by Papageorgiou et al.[2] discussed working with an alternate feature set based on Haar wavelets instead of the usual image intensities. Viola and Jones[1] adapted the idea of using Haar wavelets and developed the so-called Haar-like features. A Haar-like feature considers adjacent rectangular regions at a specific location in a detection window, sums up the pixel intensities in each region and calculates the difference between these sums. This difference is then used to categorize subsections of an image. For example, let us say we have an image database with human faces. It is a common observation that among all faces the region of the eyes is darker than the region of the cheeks. Therefore a common Haar feature for face detection is a set of two adjacent rectangles that lie above the eye and the cheek region. The position of these rectangles is defined relative to a detection window that acts like a bounding box to the target object (the face in this case).

In the detection phase of the Viola–Jones object detection framework, a window of the target size is moved over the input image, and for each subsection of the image the Haar-like feature is calculated. This difference is then compared to a learned threshold that separates non-objects from objects. Because such a Haar-like feature is only a weak learner or classifier (its detection quality is slightly better than random guessing) a large number of Haar-like features are necessary to describe an object with sufficient accuracy. In the Viola–Jones object detection framework, the Haar-like features are therefore organized in something called a classifier cascade to form a strong learner or classifier.

The key advantage of a Haar-like feature over most other features is its calculation speed. Due to the use of integral images, a Haar-like feature of any size can be calculated in constant time (approximately 60 microprocessor instructions for a 2-rectangle feature).

Haar-like feature和Haar wavelet的更多相关文章

  1. 浅析人脸检测之Haar分类器方法:Haar特征、积分图、 AdaBoost 、级联

    浅析人脸检测之Haar分类器方法 一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸 ...

  2. 浅析人脸检测之Haar分类器方法

    一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发 ...

  3. Ello讲述Haar人脸检测:易懂、很详细、值得围观

    源地址:http://www.thinkface.cn/thread-142-1-1.html 由于工作需要,我开始研究人脸检测部分的算法,这期间断断续续地学习Haar分类器的训练以及检测过程,在这里 ...

  4. 2、转载一篇,浅析人脸检测之Haar分类器方法

    转载地址http://www.cnblogs.com/ello/archive/2012/04/28/2475419.html 浅析人脸检测之Haar分类器方法  [补充] 这是我时隔差不多两年后, ...

  5. haar特征(转)

    转载链接:http://blog.csdn.net/lanxuecc/article/details/52222369 Haar特征 Haar特征原理综述 Haar特征是一种反映图像的灰度变化的,像素 ...

  6. Haar分类器方法

    一.Haar分类器的前世今生 二.人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方 ...

  7. HAAR与DLib的实时人脸检测之实现与对比

    人脸检测方法有许多,比如opencv自带的人脸Haar特征分类器和dlib人脸检测方法等. 对于opencv的人脸检测方法,优点是简单,快速:存在的问题是人脸检测效果不好.正面/垂直/光线较好的人脸, ...

  8. 第九节、人脸检测之Haar分类器

    人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发展起来. 目前人脸检测的方法主 ...

  9. 【图像处理】计算Haar特征个数

    http://blog.csdn.net/xiaowei_cqu/article/details/8216109 Haar特征/矩形特征 Haar特征本身并不复杂,就是用图中黑色矩形所有像素值的和减去 ...

随机推荐

  1. numpy之初探排序和集合运算

    排序 排序 numpy与python列表内置的方法类似,也可通过sort方法进行排序. 用法如下: In [1]: import numpy as np In [2]: x = np.random.r ...

  2. bzoj 1004 [HNOI2008]Cards && poj 2409 Let it Bead ——置换群

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1004 http://poj.org/problem?id=2409 学习材料:https:/ ...

  3. Ubuntu 14.04报“leaking memory”错误

    在做一些实验的时候,临时配置了笔记本网卡eth0的IP地址,结果出现了以下错误, $ sudo ifconfig eth0 192.168.2.100/24 no talloc stackframe  ...

  4. php写入、追加写入文件的实例

    $myfile = fopen("newfile.txt", "w") or die("Unable to open file!"); $t ...

  5. 蓝桥杯 算法训练 ALGO-50 数组查找及替换

    算法训练 数组查找及替换   时间限制:1.0s   内存限制:512.0MB 问题描述 给定某整数数组和某一整数b.要求删除数组中可以被b整除的所有元素,同时将该数组各元素按从小到大排序.如果数组元 ...

  6. 几大PHP套件

    UPUPW:http://www.upupw.net/ PHPStudy:http://www.phpstudy.net/ PHPNow:http://servkit.org/

  7. videojs集成--播放rtmp流

    之前说到已经把流推送过来了,这时候就可以使用videojs来进行显示播放. 首先要先有一个文件,那就是video-js.swf 因为,这种播放方式html已经不能很好的进行播放了,需要用到flash来 ...

  8. 【转】JMeter远程测试

    详解JMeter远程测试(1) 如果运行JMeter客户端的机器性能不能满足测试需要,那么测试人员可以通过单个JMeter GUI客户端来控制多个远程JMeter服务器,以便对服务器进行压力测试,模拟 ...

  9. 关于ESXI能虚拟出多少个虚拟机和CPU的关系

    当你的虚拟机报如下错误的时候: esxi5.0版本最高配置: https://www.vmware.com/content/dam/digitalmarketing/vmware/zh-cn/pdf/ ...

  10. Android:通过滤镜实现点击图片变暗效果

    实现点击图片(ImageView)变暗效果,有一个较简单的方法,就是讲目标图片设置为背景图片(setBackground),再创建一个selector.xml文件,里面放置一张普通状态时的透明图片,一 ...