【BZOJ3526】[Poi2014]Card

Description

有n张卡片在桌上一字排开,每张卡片上有两个数,第i张卡片上,正面的数为a[i],反面的数为b[i]。现在,有m个熊孩子来破坏你的卡片了!
第i个熊孩子会交换c[i]和d[i]两个位置上的卡片。
每个熊孩子捣乱后,你都需要判断,通过任意翻转卡片(把正面变为反面或把反面变成正面,但不能改变卡片的位置),能否让卡片正面上的数从左到右单调不降。

Input

第一行一个n。
接下来n行,每行两个数a[i],b[i]。
接下来一行一个m。
接下来m行,每行两个数c[i],d[i]。

Output

m行,每行对应一个答案。如果能成功,输出TAK,否则输出NIE。

Sample Input

4
2 5
3 4
6 3
2 7
2
3 4
1 3

Sample Output

NIE
TAK

HINT

【样例解释】
交换3和4后,卡片序列为(2,5) (3,4) (2,7) (6,3),不能成功。
交换1和3后,卡片序列为(2,7) (3,4) (2,5) (6,3),翻转第3张卡片,卡片的正面为2,3,5,6,可以成功。

【数据范围】
n≤200000,m≤1000000,0≤a[i],b[i]≤10000000,1≤c[i],d[i]≤n.

题解:线段树的区间合并好题~

对于区间x,我们令s[x][0/1][0/1]表示i的左端点选择(a/b),右端点选择(a/b)能否单调不降,然后pushup一下就行了

#include <cstdio>
#include <cstring>
#include <iostream>
#define lson x<<1
#define rson x<<1|1
using namespace std;
const int maxn=200010;
int n,m;
int s[maxn<<2][2][2],v[maxn][2];
void pushup(int l,int r,int x)
{
int mid=l+r>>1,i,j,k;
for(i=0;i<=1;i++) for(j=0;j<=1;j++) for(s[x][i][j]=0,k=0;k<=1;k++) for(l=0;l<=1;l++)
s[x][i][j]|=s[lson][i][k]&s[rson][l][j]&(v[mid][k]<=v[mid+1][l]);
}
void build(int l,int r,int x)
{
if(l==r)
{
s[x][1][1]=s[x][0][0]=1;
return ;
}
int mid=l+r>>1;
build(l,mid,lson),build(mid+1,r,rson);
pushup(l,r,x);
}
void updata(int l,int r,int x,int a)
{
if(l==r)
{
s[x][1][1]=s[x][0][0]=1;
return ;
}
int mid=l+r>>1;
if(a<=mid) updata(l,mid,lson,a);
else updata(mid+1,r,rson,a);
pushup(l,r,x);
}
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
int main()
{
n=rd();
int i,a,b;
for(i=1;i<=n;i++) v[i][0]=rd(),v[i][1]=rd();
build(1,n,1),m=rd();
for(i=1;i<=m;i++)
{
a=rd(),b=rd();
swap(v[a][0],v[b][0]),swap(v[a][1],v[b][1]);
updata(1,n,1,a),updata(1,n,1,b);
if(s[1][0][0]|s[1][0][1]|s[1][1][0]|s[1][1][1]) printf("TAK\n");
else printf("NIE\n");
}
return 0;
}

【BZOJ3526】[Poi2014]Card 线段树的更多相关文章

  1. BZOJ3526[Poi2014]Card——线段树合并

    题目描述 有n张卡片在桌上一字排开,每张卡片上有两个数,第i张卡片上,正面的数为a[i],反面的数为b[i].现在,有m个熊孩子来破坏你的卡片了!第i个熊孩子会交换c[i]和d[i]两个位置上的卡片. ...

  2. [BZOJ3526][Poi2014]Card 线段树

    链接 题意:有一些卡牌,正反各有一个数,你可以任意翻转,每次操作会将两张卡牌的位置调换,你需要在每次操作后回答以现在的卡牌顺序能否通过反转形成一个单调不降的序列 题解 线段树上维护 \(f[o][0/ ...

  3. 【bzoj3526】[Poi2014]Card 线段树区间合并

    题目描述 有n张卡片在桌上一字排开,每张卡片上有两个数,第i张卡片上,正面的数为a[i],反面的数为b[i].现在,有m个熊孩子来破坏你的卡片了!第i个熊孩子会交换c[i]和d[i]两个位置上的卡片. ...

  4. bzoj3526[Poi2014]Card*

    bzoj3526[Poi2014]Card 题意: 有n张卡片在桌上一字排开,每张卡片上有两个数,第i张卡片上,正面的数为a[i],反面的数为b[i].有m个操作,第i个操作会交换c[i]和d[i]两 ...

  5. BZOJ3526 [Poi2014]Card 【线段树】

    题目链接 BZOJ3526 题解 思来想去,发现很显然可以用线段树维护 每个区间保存所有合法方案的左右端点[当左端点一定是,右端点当然存最小的那个就行了] 这么整的数,\(\frac{1}{1000} ...

  6. 2019.01.16 bzoj3526: [Poi2014]Card(线段树)

    传送门 线段树菜题. 题意:有一些卡牌,正反各有一个数,你可以任意翻转,每次操作会将两张卡牌的位置调换,你需要在每次操作后回答以现在的卡牌顺序能否通过反转形成一个单调不降的序列. 思路: 对于一个线段 ...

  7. 【BZOJ 3524】【Poi2014】Couriers 可持久化线段树

    为什么这个主席树叫可持久化线段树,我不知道,具体得问达神.我无限T,然后DaD3zZ一针见血地指出了我的N*50爆内存导致无限编译超时O)ZO)ZO)Z真是太神啦.以图为鉴: 达神题解传送门:http ...

  8. BZOJ4391 High Card Low Card [Usaco2015 dec](贪心+线段树/set库

    正解:贪心+线段树/set库 解题报告: 算辣直接甩链接qwq 恩这题就贪心?从前往后从后往前各推一次然后找一遍哪个地方最大就欧克了,正确性很容易证明 (这里有个,很妙的想法,就是,从后往前推从前往后 ...

  9. [bzoj4391] [Usaco2015 dec]High Card Low Card 贪心 线段树

    ---题面--- 题解: 观察到以决策点为分界线,以点数大的赢为比较方式的游戏都是它的前缀,反之以点数小的赢为比较方式的都是它的后缀,也就是答案是由两段答案拼凑起来的. 如果不考虑判断胜负的条件的变化 ...

随机推荐

  1. Json_decode:详解

    Json_decode:详解 json_decode - 对 JSON 格式的字符串进行编码   mixed json_decode ( string $json [, bool $assoc = f ...

  2. 访问vector元素方法的效率比较(转)

    LInux下: gcc 4.47,red hat6 #include<iostream> #include<vector> #include<time.h> usi ...

  3. Java 遍历一个对象的属性 将非空属性赋值给另一个对象

    //将origin属性注入到destination中 public <T> void mergeObject(T origin, T destination) { if (origin = ...

  4. Nginx-安装依赖及配置详解

    依赖 在安装Nginx之前, 需确保系统已经安装了gcc. openssl-devel. pcre-devel和zlib-devel软件库 配置 Nginx的配置文件nginx.conf位于其安装目录 ...

  5. node.js零基础详细教程(2):模块化、fs文件操作模块、http创建服务模块

    第二章  建议学习时间4小时  课程共10章 学习方式:详细阅读,并手动实现相关代码 学习目标:此教程将教会大家 安装Node.搭建服务器.express.mysql.mongodb.编写后台业务逻辑 ...

  6. 硬件(MAC)地址的概念及作用

    概念:MAC地址就是在媒体接入层上使用的地址,也叫物理地址.硬件地址或链路地址,其被固化在适配器的ROM中. 可见MAC地址实际上就是适配器地址或适配器标识符.当某台计算机使用某块适配器后,适配器上的 ...

  7. SpringCloud系列十:使用Feign实现声明式REST调用

    1. 回顾 前文的示例中是使用RestTemplate实现REST API调用的,代码大致如下: @GetMapping("/user/{id}") public User fin ...

  8. 系统管理员应该知道的 20 条 Linux 命令

    如果您的应用程序不工作,或者您希望在寻找更多信息,这 20 个命令将派上用场. 在这个全新的工具和多样化的开发环境井喷的大环境下,任何开发者和工程师都有必要学习一些基本的系统管理命令.特定的命令和工具 ...

  9. LeetCode 75 Sort Colors(颜色排序)

    翻译 给定一个包括红色.白色.蓝色这三个颜色对象的数组.对它们进行排序以使同样的颜色变成相邻的,其顺序是红色.白色.蓝色. 在这里,我们将使用数字0.1和2分别来代表红色.白色和蓝色. 原文 Give ...

  10. Atitit.编程语言原理---方法重载的实现与设计 调用方法的原理

    Atitit.编程语言原理---方法重载的实现与设计 调用方法的原理 1. 重载包括:普通方法的重载和构造方法的重载 1 1.1. 横向重载”和“纵向重载”1 1.2. 方法签名通过  方法名称,参数 ...