CodeForces - 896D :Nephren Runs a Cinema(卡特兰数&组合数学---比较综合的一道题)
Lakhesh loves to make movies, so Nephren helps her run a cinema. We may call it No. 68 Cinema.
However, one day, the No. 68 Cinema runs out of changes (they don't have 50-yuan notes currently), but Nephren still wants to start their business. (Assume that yuan is a kind of currency in Regulu Ere.)
There are three types of customers: some of them bring exactly a 50-yuan note; some of them bring a 100-yuan note and Nephren needs to give a 50-yuan note back to him/her; some of them bring VIP cards so that they don't need to pay for the ticket.
Now n customers are waiting outside in queue. Nephren wants to know how many possible queues are there that they are able to run smoothly (i.e. every customer can receive his/her change), and that the number of 50-yuan notes they have after selling tickets to all these customers is between l and r, inclusive. Two queues are considered different if there exists a customer whose type is different in two queues. As the number can be large, please output the answer modulo p.
Input
One line containing four integers n (1 ≤ n ≤ 105), p (1 ≤ p ≤ 2·109), l and r (0 ≤ l ≤ r ≤ n).
Output
One line indicating the answer modulo p.
Examples
4 97 2 3
13
4 100 0 4
35
Note
We use A, B and C to indicate customers with 50-yuan notes, customers with 100-yuan notes and customers with VIP cards respectively.
For the first sample, the different possible queues that there are 2 50-yuan notes left are AAAB, AABA, ABAA, AACC, ACAC, ACCA, CAAC, CACA and CCAA, and the different possible queues that there are 3 50-yuan notes left are AAAC, AACA, ACAA and CAAA. So there are 13 different queues satisfying the first sample. Similarly, there are 35 different queues satisfying the second sample.
题意:现在有N个人排队看电影,最开始收费处没有50元额钞票。买票的人可以付100元、50元或者刷卡,但是付100元的时候需要保证收费处能补50元。
问最后收费处还剩L到R张50元的方案数。
思路:如果不考虑刷卡,那就是一个卡特兰数,有刷卡的情况,我们枚举刷卡个数即可。所以我们现在假设不存在刷卡的情况:
首先我们需要知道卡特兰数的扩展--->从(0,0)出发到点(a,b),方案数为C(a+b,a);其中经过x=y分界线的方案数等效于从(-1,1)到(a,b)的方案数C(a+b,a-1);所以从(0,0)到(a,b),而且不经过x=y的方案数为C(a+b,a)-C(a+b,a-1);
我们注意到这里的a+b为定值,a和a-1相差1,而[L,R]又是连续区间,所以我们利用前缀和来解决这个问题,最终可以推出:
ans=(C(N,(N-L)/2)-C(N,(N-L)/2-1)) + (C(N,(N-L)/2-1)-C(N,(N-L)/2-2)) +...+ (C(N,(N-R)/2)-C(N,(N-R-1)/2)) =C(N,(N-L)/2)-C(N,(N-R-1)/2);
然后需要解决的问题是除法问题,因为P不一定是质数,但是鉴于N比较小,我们可以手动把所有数拆为不含P因子的数和含P因子的数,然后前者做正常的乘法,除法。后者做加,减法,最后统一快速幂乘。
(也可以用找循环节的方法:把P拆分为多个素数幂的形式,最后用中国剩余定理合并,可以见CQZhangYu的代码,但是这里N比较小,没必要。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define ll long long
using namespace std;
const int maxn=;
int f[maxn],rev[maxn],P,N,p[],cnt,num[maxn][];
int qpow(int a,int x){ int res=;while(x){if(x&)res=(ll)res*a%P;a=(ll)a*a%P;x>>=;}return res; }
void solve()
{
int phi=P,tp=P; f[]=rev[]=;
for(int i=;i<=tp/i;i++){
if(tp%i==) {
p[++cnt]=i;
phi=phi/i*(i-);
while(tp%i==) tp/=i;
}
}
if(tp>) phi=phi/tp*(tp-),p[++cnt]=tp;
rep(i,,N) {
int x=i; rep(j,,cnt){
num[i][j]=num[i-][j];
while(x%p[j]==) num[i][j]++,x/=p[j];
}
f[i]=(ll)f[i-]*x%P;
rev[i]=qpow(f[i],phi-);
}
}
int C(int x,int y)
{
if(y<) return ; int res=;
res=(ll)f[x]*rev[y]%P*rev[x-y]%P;
rep(i,,cnt) res=(ll)res*qpow(p[i],num[x][i]-num[y][i]-num[x-y][i])%P;
return res;
}
int main()
{
int L,R,ans=;
scanf("%d%d%d%d",&N,&P,&L,&R);
R=min(N,R); solve();
rep(i,,N-L) ans=(ans+1LL*(C(N-i,(N-i-L)>>)-C(N-i,(N-i-R-)>>))*C(N,i))%P;
printf("%d\n",ans);
return ;
}
CodeForces - 896D :Nephren Runs a Cinema(卡特兰数&组合数学---比较综合的一道题)的更多相关文章
- 【CF896D】Nephren Runs a Cinema 卡特兰数+组合数+CRT
[CF896D]Nephren Runs a Cinema 题意:一个序列中有n格数,每个数可能是0,1,-1,如果一个序列的所有前缀和都>=0且总和$\in [L,R]$,那么我们称这个序列是 ...
- CF896D Nephren Runs a Cinema
CF896D Nephren Runs a Cinema 题意 售票员最开始没有纸币,每次来一个顾客可以给她一张.拿走她一张或不操作.求出不出现中途没钱给的情况 \(n\) 名顾客后剩余钱数在 \(l ...
- Train Problem II(卡特兰数 组合数学)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1023 Train Problem II Time Limit: 2000/1000 MS (Java/ ...
- uva 1478 - Delta Wave(递推+大数+卡特兰数+组合数学)
option=com_onlinejudge&Itemid=8&category=471&page=show_problem&problem=4224" st ...
- hdu5673 Robot 卡特兰数+组合数学+线性筛逆元
Robot Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Subm ...
- BZOJ1856:[SCOI2010]字符串(卡特兰数,组合数学)
Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgw ...
- CodeForces - 1204E Natasha, Sasha and the Prefix Sums (组合数学,卡特兰数扩展)
题意:求n个1,m个-1组成的所有序列中,最大前缀之和. 首先引出这样一个问题:使用n个左括号和m个右括号,组成的合法的括号匹配(每个右括号都有对应的左括号和它匹配)的数目是多少? 1.当n=m时,显 ...
- HDOJ/HDU 1133 Buy the Ticket(数论~卡特兰数~大数~)
Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...
- 【高精度练习+卡特兰数】【Uva1133】Buy the Ticket
Buy the Ticket Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
随机推荐
- 值得关注的10个Python语言学习博客
大家好,还记得我当时学习python的时候,我一直努力地寻找关于python的博客,但我发现它们的数量很少.这也是我建立这个博客的原因,向大家分享我自己学到的新知识.今天我向大家推荐10个值得我们关注 ...
- 【TopCoder】SRM152 DIV2总结
为什么平常刷的时候感觉还不错,比赛的时候只能做出来一道题=.= 250分题:大水题,根据题目规则把一个字符串翻译成数字,直接代码:GitHub 我是通过遍历一个个数出来的,看到大神的解法是把字符用‘- ...
- ACM训练小结-2018年6月16日
今天题目情况如下:A题:线段树+XOR性质.情况:由于写法问题,调试困难,浪费大量时间.B题:(对所有满足i mod p==q,求a[i]之和),无修改,直接上n*sqrt(n)的分块写法.情况:由于 ...
- Linux 多线程编程实例
一.多线程 VS 多进程 和进程相比,线程有很多优势.在Linux系统下,启动一个新的进程必须分配给它独立的地址空间,建立众多的数据表来维护代码段和数据.而运行于一个进程中的多个线程,他们之间使用相同 ...
- jupyter && ipython notebook简介
2017-08-19 最近用了一下 ipython notebook 也就是 jupyter,这里有一个介绍还不错: http://www.cnblogs.com/howiewang/p/jupyte ...
- RabbitMQ死信队列
关于RabbitMQ死信队列 死信队列 听上去像 消息“死”了 其实也有点这个意思,死信队列 是 当消息在一个队列 因为下列原因: 消息被拒绝(basic.reject/ basic.nac ...
- ZooKeeper服务-操作(API、集合更新、观察者、ACL)
操作 create:创建一个znode(必须要有父节点)delete:删除一个znode(该znode不能有任何子节点)exists:测试一个znode是否存在并且查询它的元数据getACL,setA ...
- Mysql 利用小工具源码
#include "StdAfx.h" #include "Sql.h" #include <windows.h> #include <std ...
- Java -- JDBC 事务处理, 事务的隔离级别 脏读 不可重复读 等...
1. 事务指逻辑上的一组操作,组成这组操作的各个单元,要不全部成功,要不全部不成功. 数据库开启事务命令 •start transaction 开启事务 •Rollback 回滚事务 •Commit ...
- SpringBoot中使用Spring Data Jpa 实现简单的动态查询的两种方法
软件152 尹以操 首先谢谢大佬的简书文章:http://www.jianshu.com/p/45ad65690e33# 这篇文章中讲的是spring中使用spring data jpa,使用了xml ...