CodeForces - 896D :Nephren Runs a Cinema(卡特兰数&组合数学---比较综合的一道题)
Lakhesh loves to make movies, so Nephren helps her run a cinema. We may call it No. 68 Cinema.
However, one day, the No. 68 Cinema runs out of changes (they don't have 50-yuan notes currently), but Nephren still wants to start their business. (Assume that yuan is a kind of currency in Regulu Ere.)
There are three types of customers: some of them bring exactly a 50-yuan note; some of them bring a 100-yuan note and Nephren needs to give a 50-yuan note back to him/her; some of them bring VIP cards so that they don't need to pay for the ticket.
Now n customers are waiting outside in queue. Nephren wants to know how many possible queues are there that they are able to run smoothly (i.e. every customer can receive his/her change), and that the number of 50-yuan notes they have after selling tickets to all these customers is between l and r, inclusive. Two queues are considered different if there exists a customer whose type is different in two queues. As the number can be large, please output the answer modulo p.
Input
One line containing four integers n (1 ≤ n ≤ 105), p (1 ≤ p ≤ 2·109), l and r (0 ≤ l ≤ r ≤ n).
Output
One line indicating the answer modulo p.
Examples
4 97 2 3
13
4 100 0 4
35
Note
We use A, B and C to indicate customers with 50-yuan notes, customers with 100-yuan notes and customers with VIP cards respectively.
For the first sample, the different possible queues that there are 2 50-yuan notes left are AAAB, AABA, ABAA, AACC, ACAC, ACCA, CAAC, CACA and CCAA, and the different possible queues that there are 3 50-yuan notes left are AAAC, AACA, ACAA and CAAA. So there are 13 different queues satisfying the first sample. Similarly, there are 35 different queues satisfying the second sample.
题意:现在有N个人排队看电影,最开始收费处没有50元额钞票。买票的人可以付100元、50元或者刷卡,但是付100元的时候需要保证收费处能补50元。
问最后收费处还剩L到R张50元的方案数。
思路:如果不考虑刷卡,那就是一个卡特兰数,有刷卡的情况,我们枚举刷卡个数即可。所以我们现在假设不存在刷卡的情况:
首先我们需要知道卡特兰数的扩展--->从(0,0)出发到点(a,b),方案数为C(a+b,a);其中经过x=y分界线的方案数等效于从(-1,1)到(a,b)的方案数C(a+b,a-1);所以从(0,0)到(a,b),而且不经过x=y的方案数为C(a+b,a)-C(a+b,a-1);
我们注意到这里的a+b为定值,a和a-1相差1,而[L,R]又是连续区间,所以我们利用前缀和来解决这个问题,最终可以推出:
ans=(C(N,(N-L)/2)-C(N,(N-L)/2-1)) + (C(N,(N-L)/2-1)-C(N,(N-L)/2-2)) +...+ (C(N,(N-R)/2)-C(N,(N-R-1)/2)) =C(N,(N-L)/2)-C(N,(N-R-1)/2);
然后需要解决的问题是除法问题,因为P不一定是质数,但是鉴于N比较小,我们可以手动把所有数拆为不含P因子的数和含P因子的数,然后前者做正常的乘法,除法。后者做加,减法,最后统一快速幂乘。
(也可以用找循环节的方法:把P拆分为多个素数幂的形式,最后用中国剩余定理合并,可以见CQZhangYu的代码,但是这里N比较小,没必要。
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define ll long long
using namespace std;
const int maxn=;
int f[maxn],rev[maxn],P,N,p[],cnt,num[maxn][];
int qpow(int a,int x){ int res=;while(x){if(x&)res=(ll)res*a%P;a=(ll)a*a%P;x>>=;}return res; }
void solve()
{
int phi=P,tp=P; f[]=rev[]=;
for(int i=;i<=tp/i;i++){
if(tp%i==) {
p[++cnt]=i;
phi=phi/i*(i-);
while(tp%i==) tp/=i;
}
}
if(tp>) phi=phi/tp*(tp-),p[++cnt]=tp;
rep(i,,N) {
int x=i; rep(j,,cnt){
num[i][j]=num[i-][j];
while(x%p[j]==) num[i][j]++,x/=p[j];
}
f[i]=(ll)f[i-]*x%P;
rev[i]=qpow(f[i],phi-);
}
}
int C(int x,int y)
{
if(y<) return ; int res=;
res=(ll)f[x]*rev[y]%P*rev[x-y]%P;
rep(i,,cnt) res=(ll)res*qpow(p[i],num[x][i]-num[y][i]-num[x-y][i])%P;
return res;
}
int main()
{
int L,R,ans=;
scanf("%d%d%d%d",&N,&P,&L,&R);
R=min(N,R); solve();
rep(i,,N-L) ans=(ans+1LL*(C(N-i,(N-i-L)>>)-C(N-i,(N-i-R-)>>))*C(N,i))%P;
printf("%d\n",ans);
return ;
}
CodeForces - 896D :Nephren Runs a Cinema(卡特兰数&组合数学---比较综合的一道题)的更多相关文章
- 【CF896D】Nephren Runs a Cinema 卡特兰数+组合数+CRT
[CF896D]Nephren Runs a Cinema 题意:一个序列中有n格数,每个数可能是0,1,-1,如果一个序列的所有前缀和都>=0且总和$\in [L,R]$,那么我们称这个序列是 ...
- CF896D Nephren Runs a Cinema
CF896D Nephren Runs a Cinema 题意 售票员最开始没有纸币,每次来一个顾客可以给她一张.拿走她一张或不操作.求出不出现中途没钱给的情况 \(n\) 名顾客后剩余钱数在 \(l ...
- Train Problem II(卡特兰数 组合数学)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1023 Train Problem II Time Limit: 2000/1000 MS (Java/ ...
- uva 1478 - Delta Wave(递推+大数+卡特兰数+组合数学)
option=com_onlinejudge&Itemid=8&category=471&page=show_problem&problem=4224" st ...
- hdu5673 Robot 卡特兰数+组合数学+线性筛逆元
Robot Time Limit: 12000/6000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Subm ...
- BZOJ1856:[SCOI2010]字符串(卡特兰数,组合数学)
Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgw ...
- CodeForces - 1204E Natasha, Sasha and the Prefix Sums (组合数学,卡特兰数扩展)
题意:求n个1,m个-1组成的所有序列中,最大前缀之和. 首先引出这样一个问题:使用n个左括号和m个右括号,组成的合法的括号匹配(每个右括号都有对应的左括号和它匹配)的数目是多少? 1.当n=m时,显 ...
- HDOJ/HDU 1133 Buy the Ticket(数论~卡特兰数~大数~)
Problem Description The "Harry Potter and the Goblet of Fire" will be on show in the next ...
- 【高精度练习+卡特兰数】【Uva1133】Buy the Ticket
Buy the Ticket Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) T ...
随机推荐
- Python基础知识补充(重要)-作用域、特殊语法
Python作用域 python代码内部块如if语句内声明变量,在if代码段后在调用此变量并未报如“undefinded name"此类错误,例子如下: if 1 == 1: name = ...
- 大道至简(第五i章)读后感
大道至简(第五章)读后感 再一次在不想看的情况下读大道至简第五章,一个项目的实现中,“过程”与“工程”是同一个概念吗?答案自然是否定的.“过程”是一个确定的模板,而“工程”是有一个目的的实现在里面. ...
- 交叉编译Mesa,X11lib,Qt opengl
记录Mesa配置文件如下: Mesa版本:Mesa-10.2.3 CC=/usr/local/arm-4.8.1/bin/arm-none-linux-gnueabi-gcc CXX=/usr/loc ...
- 网络:W5500抓包TCP segment of a reassembled PDU
1.问题描述 W5500 http测试,用wireshark抓包,发现出现很多TCP segment of a reassembled PD. 2. 问题分析 TCP segment of a rea ...
- STM32探秘 之FSMC
源:STM32探秘 之FSMC STM32 FSMC总线深入研究
- spring boot 基础学习
构建微服务:Spring boot 入门篇 http://www.cnblogs.com/ityouknow/p/5662753.html SpringBoot入门系列:第一篇 Hello World ...
- hdoj1006--Tick and Tick
Problem Description The three hands of the clock are rotating every second and meeting each other ma ...
- shutdown TCP 端口445
一. 协议:TCP 端口:445 二. shutdown /m \\192.168.1.15 -s -t 60 net use \\192.168.1.15\ipc$ 密码 /user:账户 三. g ...
- ZC_知识点
1. 在创建一个JNI动态库的工程时应该将工程的输出目标设置为动态连接库(Windows下为.dll,Unix-like系统下为.so,OS X下为.dylib) 2.类型对应关系 (Java与C/C ...
- Quartz实现定时任务实例
1首先实现Job接口,创建任务 public class HelloJob implements Job{ @Override public void execute(JobExecutionCont ...