这题曾经用sam打过,现在学sa再来做一遍。

基本思路:计算A所有的后缀和B所有后缀之间的最长公共前缀。

分组之后,假设现在是做B的后缀。前面的串能和当前的B后缀产生的公共前缀必定是从前往后单调递增的,每次与h[i]取min时必定将栈尾一些长的全部取出来,搞成一个短的。

所以就开一个栈,栈里存的是长度,同时存一下它的出现此处cnt。

注意各种细节啊。。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
using namespace std; typedef long long LL;
const int N=*;
int K,sl,cl,sa[N],rk[N],Rs[N],wr[N],y[N],h[N];
LL sk[N],cnt[N];
char s[N],c[N]; void get_sa(int m)
{
for(int i=;i<=cl;i++) rk[i]=c[i];
for(int i=;i<=m;i++) Rs[i]=;
for(int i=;i<=cl;i++) Rs[rk[i]]++;
for(int i=;i<=m;i++) Rs[i]+=Rs[i-];
for(int i=cl;i>=;i--) sa[Rs[rk[i]]--]=i; int ln=,p=;
while(p<cl)
{
int k=;
for(int i=cl-ln+;i<=cl;i++) y[++k]=i;
for(int i=;i<=cl;i++) if(sa[i]>ln) y[++k]=sa[i]-ln; for(int i=;i<=cl;i++) wr[i]=rk[y[i]];
for(int i=;i<=m;i++) Rs[i]=;
for(int i=;i<=cl;i++) Rs[wr[i]]++;
for(int i=;i<=m;i++) Rs[i]+=Rs[i-];
for(int i=cl;i>=;i--) sa[Rs[wr[i]]--]=y[i]; for(int i=;i<=cl;i++) wr[i]=rk[i];
for(int i=cl+;i<=cl+ln;i++) wr[i]=;
p=;rk[sa[]]=;
for(int i=;i<=cl;i++)
{
if(wr[sa[i]]!=wr[sa[i-]] || wr[sa[i]+ln]!=wr[sa[i-]+ln]) p++;
rk[sa[i]]=p;
}
ln*=,m=p;
}
sa[]=,rk[]=;
} void get_h()
{
int k=,j;
for(int i=;i<=cl;i++) if(rk[i]!=)
{
j=sa[rk[i]-];
if(k) k--;
while(c[i+k]==c[j+k] && i+k<=cl && j+k<=cl) k++;
h[rk[i]]=k;
}
h[]=;
} void init()
{
int i,tl;cl=;
scanf("%s",s+);
tl=strlen(s+);sl=tl;
for(i=;i<=sl;i++) c[++cl]=s[i];
scanf("%s",s+);
tl=strlen(s+);
c[++cl]='#';
for(i=;i<=sl;i++) c[++cl]=s[i];
} bool check(int x,int tmp)
{
if(tmp==) return (x<=sl) ? :;
else return (x<=sl) ? :;
} LL solve(int tmp)
{
int tot=;
LL sum=,ans=;
memset(sk,,sizeof(sk));
memset(cnt,,sizeof(cnt));
for(int i=;i<=cl;i++)
{
if(h[i]<K)
{
for(int j=;j<=tot;j++) cnt[j]=;
tot=;sum=;
}
else
{
int tcnt=,tsum=;
while(sk[tot] > h[i]-K+)
{
tcnt+=cnt[tot];
tsum+=cnt[tot]*sk[tot];
sk[tot]=,cnt[tot]=;
tot--;
}
if(tcnt)
{
sk[++tot]=h[i]-K+;
cnt[tot]=tcnt;
sum=sum-tsum+tcnt*sk[tot];
}
if(check(sa[i],tmp)) ans+=sum;
}
if(!check(sa[i],tmp) && (cl-sa[i]+>=K))
{
sk[++tot]=(cl-sa[i]+)-K+;
cnt[tot]++;
sum+=sk[tot];
}
}
return ans;
} int main()
{
freopen("a.in","r",stdin);
freopen("me.out","w",stdout);
while()
{
scanf("%d",&K);
if(!K) return ;
init();
get_sa();
get_h();
// for(int i=1;i<=cl;i++) printf("%d ",sa[i]);printf("\n");
// for(int i=1;i<=cl;i++) printf("%d ",rk[i]);printf("\n");
// for(int i=1;i<=cl;i++)
// {
// for(int j=sa[i];j<=cl;j++) printf("%c",c[j]);printf("\n");
// }
printf("%I64d\n",solve()+solve());
}
return ;
}

【poj3415-长度不小于k的公共子串个数】后缀数组+单调栈的更多相关文章

  1. 【POJ 3415】Common Substrings 长度不小于k的公共子串的个数

    长度不小于k的公共子串的个数,论文里有题解,卡了一上午,因为sum没开long long!!! 没开long long毁一生again--- 以后应该早看POJ里的Discuss啊QAQ #inclu ...

  2. POJ-Common Substrings(后缀数组-长度不小于 k 的公共子串的个数)

    题意: 长度不小于 k 的公共子串的个数 分析: 基本思路是计算 A 的所有后缀和 B 的所有后缀之间的最长公共前缀的长度,把最长公共前缀长度不小于 k 的部分全部加起来. 先将两个字符串连起来,中间 ...

  3. POJ 3415 Common Substrings(长度不小于K的公共子串的个数+后缀数组+height数组分组思想+单调栈)

    http://poj.org/problem?id=3415 题意:求长度不小于K的公共子串的个数. 思路:好题!!!拉丁字母让我Wa了好久!!单调栈又让我理解了好久!!太弱啊!! 最简单的就是暴力枚 ...

  4. POJ 3415 Common Substrings 【长度不小于 K 的公共子串的个数】

    传送门:http://poj.org/problem?id=3415 题意:给定两个串,求长度不小于 k 的公共子串的个数 解题思路: 常用技巧,通过在中间添加特殊标记符连接两个串,把两个串的问题转换 ...

  5. Common Substrings POJ - 3415(长度不小于k的公共子串的个数)

    题意: 给定两个字符串A 和 B, 求长度不小于 k 的公共子串的个数(可以相同) 分两部分求和sa[i-1] > len1  sa[i] < len1  和  sa[i-1] < ...

  6. poj 3415 后缀数组 两个字符串中长度不小于 k 的公共子串的个数

    Common Substrings Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 11469   Accepted: 379 ...

  7. POJ - 3415 Common Substrings(后缀数组求长度不小于 k 的公共子串的个数+单调栈优化)

    Description A substring of a string T is defined as: T( i, k)= TiTi+1... Ti+k-1, 1≤ i≤ i+k-1≤| T|. G ...

  8. POJ 3415 不小于k的公共子串的个数

    Common Substrings Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 9248   Accepted: 3071 ...

  9. POJ3415 Common Substrings —— 后缀数组 + 单调栈 公共子串个数

    题目链接:https://vjudge.net/problem/POJ-3415 Common Substrings Time Limit: 5000MS   Memory Limit: 65536K ...

随机推荐

  1. 圣思源Java视频36节练习源码分享(自己的190+行代码对比老师的39行代码)

    题目: * 随机生成50个数字(整数),每个数字范围是[10,50],统计每个数字出现的次数 * 以及出现次数最多的数字与它的个数,最后将每个数字及其出现次数打印出来, * 如果某个数字出现次数为0, ...

  2. Django笔记 —— Admin(Django站点管理界面)

    最近在学习Django,打算玩玩网页后台方面的东西,因为一直很好奇但却没怎么接触过.Django对我来说是一个全新的内容,思路想来也是全新的,或许并不能写得很明白,所以大家就凑合着看吧- 本篇笔记(其 ...

  3. 小程序如何去掉button组件的边框

    小程序获取用户授权不再支持wx.getUserInfo方法,改为用button获取,格式如下 <button class="btn btn" open-type=" ...

  4. TestNG执行测试用例的顺序

    import org.openqa.selenium.By;import org.openqa.selenium.WebDriver;import org.openqa.selenium.WebEle ...

  5. 【SpringCloud】第一篇: 服务的注册与发现(Eureka)

    前言: 必需学会SpringBoot基础知识 简介: spring cloud 为开发人员提供了快速构建分布式系统的一些工具,包括配置管理.服务发现.断路器.路由.微代理.事件总线.全局锁.决策竞选. ...

  6. 小程序js脚本模块化调用

    可以将一些公共的代码抽离成为一个单独的 js 文件,作为一个模块.模块只有通过 module.exports 或者 exports 才能对外暴露接口. 1. common.js // common.j ...

  7. Java并发基础--线程通信

    java中实现线程通信的四种方式 1.synchronized同步 多个线程之间可以借助synchronized关键字来进行间接通信,本质上是通过共享对象进行通信.如下: public class S ...

  8. Leetcode 674.最长递增序列

    最长递增序列 给定一个未经排序的整数数组,找到最长且连续的的递增序列. 示例 1: 输入: [1,3,5,4,7] 输出: 3 解释: 最长连续递增序列是 [1,3,5], 长度为3. 尽管 [1,3 ...

  9. tcp四次撒手

    转自:http://www.cnblogs.com/cy568searchx/p/3711670.html 由于TCP连接是全双工的,因此每个方向都必须单独进行关闭.这个原则是当一方完成它的数据发送任 ...

  10. Mininet实验 动态改变转发规则

    介绍 拓扑如下: 在该环境下,假设H1 ping H4,初始的路由规则是S1-S2-S5,一秒后,路由转发规则变为S1-S3-S5,再过一秒,规则变为S1-S4-S5,然后再回到最初的转发规则S1-S ...