Description

FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和。

即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 ... xor Aj),其中l<=i<=j<=r。

为了体现在线操作,对于一个询问(x,y):

l = min ( ((x+lastans) mod N)+1 , ((y+lastans) mod N)+1 ).

r = max ( ((x+lastans) mod N)+1 , ((y+lastans) mod N)+1 ).

其中lastans是上次询问的答案,一开始为0。

Solution

前缀异或和一下,然后就是求两个数的异或和最大,可以 \(trie\) 树上贪心

考虑分块做

块内可以预处理出 \(f[i][j]\) 表示块内的 \(i\),到 \(j\) 之间任选两个的异或和的最大值

然后回答询问就直接用块内信息,块外多出来的长度 \(<=\sqrt{n}\) 暴力求一遍就可以了

#include<bits/stdc++.h>
using namespace std;
template<class T>void gi(T &x){
int f;char c;
for(f=1,c=getchar();c<'0'||c>'9';c=getchar())if(c=='-')f=-1;
for(x=0;c<='9'&&c>='0';c=getchar())x=x*10+(c&15);x*=f;
}
typedef long long ll;
const int N=12010;
int n,m,b[N],B,s[N],cnt,rt[N],tt=0;ll f[205][N],a[N],bin[N];
struct data{
int ls,rs,s;
}tr[N*100];
inline void ins(int &x,int d,ll w){
tr[++tt]=tr[x];x=tt;tr[x].s++;
if(d==-1)return ;
if(w&bin[d])ins(tr[x].rs,d-1,w);
else ins(tr[x].ls,d-1,w);
}
inline ll qry(int l,int r,int d,ll w){
if(d==-1)return 0;
if(w&bin[d]){
if(tr[tr[r].ls].s-tr[tr[l].ls].s)
return bin[d]+qry(tr[l].ls,tr[r].ls,d-1,w);
return qry(tr[l].rs,tr[r].rs,d-1,w);
}
else{
if(tr[tr[r].rs].s-tr[tr[l].rs].s)
return bin[d]+qry(tr[l].rs,tr[r].rs,d-1,w);
return qry(tr[l].ls,tr[r].ls,d-1,w);
}
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
cin>>n>>m;B=sqrt(n);cnt=n/B;
for(int i=1;i<=n;i++)gi(a[i]),a[i]^=a[i-1];
for(int i=0,t;i<=n;i++)b[i]=(t=i/B),s[t]=s[t]?s[t]:i;
bin[0]=1;for(int i=1;i<=60;i++)bin[i]=bin[i-1]<<1;
ins(rt[0],60,0);
for(int i=1;i<=n;i++)rt[i]=rt[i-1],ins(rt[i],60,a[i]);
for(int i=0;i<=cnt;i++){
f[i][s[i]]=0;
for(int j=s[i]+1;j<=n;j++)
f[i][j]=max(f[i][j-1],qry(rt[s[i]-1],rt[j-1],60,a[j]));
}
ll x,y,ans=0;
while(m--){
gi(x);gi(y);x=(x+ans)%n+1;y=(y+ans)%n+1;
if(x>y)swap(x,y);x--;ans=0;
if(y-x+1<=B){
for(int i=x;i<y;i++)ans=max(ans,qry(rt[i],rt[y],60,a[i]));
printf("%lld\n",ans);
continue;
}
int t=s[b[x]]<x?b[x]+1:b[x];
for(int i=t;i<=cnt && s[b[i]]<=y;i++)ans=max(ans,f[i][y]);
for(int i=x;i<=s[t];i++)
ans=max(ans,qry(rt[i],rt[y],60,a[i]));
printf("%lld\n",ans);
}
return 0;
}

bzoj 2741: 【FOTILE模拟赛】L的更多相关文章

  1. BZOJ.2741.[FOTILE模拟赛]L(分块 可持久化Trie)

    题目链接 首先记\(sum\)为前缀异或和,那么区间\(s[l,r]=sum[l-1]^{\wedge}sum[r]\).即一个区间异或和可以转为求两个数的异或和. 那么对\([l,r]\)的询问即求 ...

  2. bzoj 2741 [FOTILE模拟赛] L

    Description 多个询问l,r,求所有子区间异或和中最大是多少 强制在线 Solution 分块+可持久化trie 1.对于每块的左端点L,预处理出L到任意一个i,[L,j] 间所有子区间异或 ...

  3. 【BZOJ2741】【块状链表+可持久化trie】FOTILE模拟赛L

    Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 .. ...

  4. BZOJ2741 FOTILE模拟赛L(分块+可持久化trie)

    显然做个前缀和之后变成询问区间内两个数异或最大值. 一种暴力做法是建好可持久化trie后直接枚举其中一个数查询,复杂度O(nmlogv). 观察到数据范围很微妙.考虑瞎分块. 设f[i][j]为第i个 ...

  5. 【bzoj2741】[FOTILE模拟赛]L 可持久化Trie树+分块

    题目描述 FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 ... xor A ...

  6. BZOJ2741:[FOTILE模拟赛]L

    Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 .. ...

  7. 【bzoj2741】[FOTILE模拟赛] L

    Portal --> bzoj2741 Solution 突然沉迷分块不能自拔 考虑用分块+可持久化trie来解决这个问题 对于每一块的块头\(L\),预处理\([L,i]\)区间内的所有子区间 ...

  8. 【BZOJ】【2741】【FOTILE模拟赛】L

    可持久化Trie+分块 神题……Orz zyf & lyd 首先我们先将整个序列搞个前缀异或和,那么某一段的异或和,就变成了两个数的异或和,所以我们就将询问[某个区间中最大的区间异或和]改变成 ...

  9. bzoj 2741: 【FOTILE模拟赛】L 分塊+可持久化trie

    2741: [FOTILE模拟赛]L Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 1116  Solved: 292[Submit][Status] ...

  10. BZOJ2741: 【FOTILE模拟赛】L

    2741: [FOTILE模拟赛]L Time Limit: 15 Sec  Memory Limit: 162 MBSubmit: 1170  Solved: 303[Submit][Status] ...

随机推荐

  1. Python数据聚合和分组运算(1)-GroupBy Mechanics

    前言 Python的pandas包提供的数据聚合与分组运算功能很强大,也很灵活.<Python for Data Analysis>这本书第9章详细的介绍了这方面的用法,但是有些细节不常用 ...

  2. 洛谷P4724 【模板】三维凸包

    题面 传送门 题解 先理一下关于立体几何的基本芝士好了--顺便全都是从\(xzy\)巨巨的博客上抄来的 加减 三维向量加减和二维向量一样 模长 \(|a|=\sqrt{x^2+y^2+z^2}\) 点 ...

  3. Java面向对象之多态(成员访问特点) 入门实例

    一.基础概念 多态的调用方式在子父类中的特殊体现. 1.访问成员变量特点: 当子父类中出现同名成员变量时. 多态调用时,编译和运行都参考引用型变量所属的类中的成员变量. 即编译和运行看等号的左边. 2 ...

  4. LAMP课程

    LAMP课程 上次课回顾: ls -a:查看全部目录内容 若文件名以“.”开头,则认为是隐藏的文件. ls-l:可以直接用命令 ll命令:ls -l 的别名. ls -m:横向显示文件和目录 ls - ...

  5. loj #535. 「LibreOJ Round #6」花火 树状数组求逆序对+主席树二维数点+整体二分

    $ \color{#0066ff}{ 题目描述 }$ 「Hanabi, hanabi--」 一听说祭典上没有烟火,Karen 一脸沮丧. 「有的哦-- 虽然比不上大型烟花就是了.」 还好 Shinob ...

  6. sticky footer布局

    一.什么是sticky footer 在网页设计中,Sticky footers设计是最古老和最常见的效果之一.它可以概括如下:如果页面内容不够长的时候,页脚块粘贴在视窗底部:如果内容足够长时,页脚块 ...

  7. 5、C++结构体的使用

    5.结构体定义 结构体是用户带定义的类型,而结构声明定义了这种类型的数据属性.定义了类型后,便可以创建这种类型的变量,因此创建结构包括两步.首先,定义结构描述——它描述并标记了能够存储在结构中的各种数 ...

  8. flask 的上下文管理

    Flask的上下文对象 Flask有两种Context(上下文),分别是 RequestContext 请求上下文 Request 请求的对象,封装了Http请求(environ)的内容 Sessio ...

  9. BFS和图的最短路径 279,127,126

    在本题中,任何一个正整数都会由完全平方数1组成,所以不可能没有解. 贪心是不成立的,因为如果寻找12的完全平方数,使用贪心,则它由9,1,1,1四个数组成:但是最少的完全平方数是由三个4组成的. 4- ...

  10. casper爬虫操作记录

    phantom.outputEncoding = "gbk"; var fs=require("fs") //var data = fs.read(" ...