题意:很明显,我就不说了

分析:令n=2^k,因为A,B,C<n,所以取模以后不会变化,所以就是求(A+x*C)%n=B

转化一下就是求 C*x=B-A(%n),最小的x

令a=C,b=B-A

原式等于ax=b(mod n) 这就是标准的解模线性方程

该方程有解的充要条件是d=gcd(n,a) && d|b(可以根据这一条判断是否FOREVER)

然后参考算法导论应用扩展欧几里得求解x

a*x0+n*y0=d

x=x0*(b/d)(mod n)

然后应用多解条件求最小正整数解,即解的最小间距t=n/d,x+=i*t,i=0,1,..d-1

x=(x%t+t)%t

代码:

#include <cstdio>
#include <iostream>
#include <ctime>
#include <vector>
#include <cmath>
#include <map>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
LL x,y;
LL Egcd(LL a,LL b)
{
if(b==)
{
x=;
y=;
return a;
}
int res=Egcd(b,a%b);
LL tmp=x;
x=y;
y=tmp-a/b*y;
return res;
}
int main()
{
LL a,b,c,k;
while(~scanf("%I64d%I64d%I64d%I64d",&a,&b,&c,&k))
{
if(!a&&!b&&!c&&!k)break;
LL n=(1ll<<k);
LL d=Egcd(c,n);
if((b-a)%d)
{
printf("FOREVER\n");
continue;
}
x*=((b-a)/d);
x=(x%(n/d)+n/d)%(n/d);
printf("%I64d\n",x);
}
return ;
}

POJ2115 C Looooops 模线性方程(扩展欧几里得)的更多相关文章

  1. POJ2115 C Looooops ——模线性方程(扩展gcd)

    题目链接:http://poj.org/problem?id=2115 C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submi ...

  2. C Looooops(扩展欧几里得+模线性方程)

    http://poj.org/problem?id=2115 题意:给出A,B,C和k(k表示变量是在k位机下的无符号整数),判断循环次数,不能终止输出"FOREVER". 即转化 ...

  3. POJ2115 - C Looooops(扩展欧几里得)

    题目大意 求同余方程Cx≡B-A(2^k)的最小正整数解 题解 可以转化为Cx-(2^k)y=B-A,然后用扩展欧几里得解出即可... 代码: #include <iostream> us ...

  4. 【扩展欧几里得】poj2115 C Looooops

    题意大概是让你求(A+Cx) mod 2^k = B的最小非负整数解. 若(B-A) mod gcd(C,2^k) = 0,就有解,否则无解. 式子可以化成Cx + 2^k*y = B - A,可以用 ...

  5. poj2115 C Looooops——扩展欧几里得

    题目:http://poj.org/problem?id=2115 就是扩展欧几里得呗: 然而忘记除公约数... 代码如下: #include<iostream> #include< ...

  6. POJ1061:青蛙的约会+POJ2115C Looooops+UVA10673Play with Floor and Ceil(扩展欧几里得)

    http://poj.org/problem?id=1061 第一遍的写法: #include <iostream> #include <stdio.h> #include & ...

  7. POJ2115(扩展欧几里得)

    C Looooops Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 23700   Accepted: 6550 Descr ...

  8. URAL 1141. RSA Attack(欧拉定理+扩展欧几里得+快速幂模)

    题目链接 题意 : 给你n,e,c,并且知道me ≡ c (mod n),而且n = p*q,pq都为素数. 思路 : 这道题的确与题目名字很相符,是个RSA算法,目前地球上最重要的加密算法.RSA算 ...

  9. 浅谈扩展欧几里得[exgcd] By cellur925

    关于扩展欧几里得从寒假时就很迷,抄题解过了同余方程,但是原理并不理解. 今天终于把坑填上了qwq. 由于本人太菜,不会用markdown,所以这篇总结是手写的(什么).(字丑不要嫌弃嘛) ****** ...

随机推荐

  1. 微软职位内部推荐-SDE

    微软近期Open的职位: Organization Summary:Engineering, Community & Online (ECO) is looking for a great & ...

  2. mysql 连接丢失错误解决(转载)

    1.1 错误信息: Caused by: com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: The last packet succes ...

  3. DB天气app冲刺二阶段第三天

    今天发现自己不能乖乖的按照计划来进行项目了.弄着这个然后不知不觉就弄到那边去了,结果就是哪边都弄不好,但又很纠结.还是要给自己一个计划白班才行,每次只是计划这一两天的根本不行.明天要指定一个计划白板, ...

  4. .NET Json 解析到Dictionary,原生代码

    之前一直使用微软自带的Json,也一直想试着自己解析下Json玩玩,于是花了一个晚上的时间写了个解析的类, 先说下思路,先从简单的说起:如:标准的JSon格式如:{"Key":&q ...

  5. 深入浅出百度地图API开发系列(3):模块化设计

    在前面两张简单介绍了百度地图API的基础知识和使用之后,我们来分析一下百度地图API的基本架构,了解一下基本架构可以帮助我们更清晰的了解API的功能和调用过程,也就可以帮助我们在实际开发中可以更方便的 ...

  6. 解决 Eclipse build workspace 慢,validation javascript 更慢的问题

    鸣谢:http://zuoming.iteye.com/blog/1430925 ------------------------------------------------ 如果用到js插件或者 ...

  7. easyui DateTimeBox 取值

    $('#dt').datetimebox('getValue')

  8. asp网站通用后台代码设计

    main2.css: a:link {color: #333333; text-decoration: none}a:visited {color: #000000; text-decoration: ...

  9. loadrunner java协议脚本要点

    常见问题 1. Error: Thread Context: Call to service of the driver failed, reason - thread context wasn't ...

  10. 深入理解JVM--JVM垃圾回收机制

    Java语言出来之前,大家都在拼命的写C或者C++的程序,而此时存在一个很大的矛盾,C++等语言创建对象要不断的去开辟空间,不用的时候有需要不断的去释放空间,既要写构造函数,又要写析构函数,很多时候都 ...