2nd order RC Low-pass Filter

Center frequency    fc = 23405.13869[Hz]

Q factor                  Q = 0.333333333333

Sallen–Key topology

http://en.wikipedia.org/wiki/Sallen%E2%80%93Key_topology

A low-pass filter, which is implemented with a Sallen–Key topology, with fc=15.9 kHz and Q = 0.5

这个电路是一个单位增益的电路,改变Sallen-Key 滤波器的增益同时就改变了滤波器的幅频特性和类型。

实际上Sallen-Key 滤波器就是增益为1的Butterworth 滤波器。

Sallen & Key 2nd order low pass filter -

  • Non-inverting

Sallen & Key 2nd order high pass filter - Non-inverting

Sallen-Key Low-pass Filter

http://sim.okawa-denshi.jp/en/OPseikiLowkeisan.htm

Cut-off frequency    fc = 23405.13869[Hz]
Quality factor          Q = 0.5

Butterworth Low-pass Filter

Transfer function

http://mathscinotes.wordpress.com/2011/06/10/filter-design-details/

Figure 4 shows the Sallen-Key circuit, which is a very commonly used circuit for this type of application

.

Analysis of Sallen-Key Circuit

Figure 5 shows a standard Kirchoff’s Voltage Law (KVL) analysis of the Sallen-Key circuit.

I usually do not work with filter equations in the form shown in Figure 5.

I like to normalize the frequency variable, s, relative to the filter bandwidth

Normalized Form

Figure 6 shows the Butterworth equation normalized to the filter bandwidth.

This is the equation form normally shown in the filter design tables.

Component Determination

Figure 7 shows how we can determine the component values required for this implementation

using the equation solving abilities of Mathcad.

We can now generate a plot of the filter magnitude characteristic using these component values

Gain Characteristic

Figure 8 shows the gain characteristic of this design.

As expected, we are seeing 120 dB of ripple attenuation.

The gain at 0 Hz is 5, so that requirement is also met.

Conclusion

This was a good example of a common filter design problem.

I have used both circuit simulators and computer algebra software to design these filters.

I have come to like computer algebra software for this kind of work because it gives me equations.

These equations allow me to see how the output varies as a function of individual component values.

This means that I can see useful approximations.

Multiple feedback topology

Multiple feedback topology is an electronic filter topology which is used to implement an electronic filter by adding two poles to the transfer function.

A diagram of the circuit topology for a second order low pass filter is shown in the figure on the right.

Analog filters and specifications swimming: Input bias current makes a difference

http://e2e.ti.com/blogs_/b/onboard/archive/2013/11/21/analog-filters-and-specifications-swimming-input-bias-current-makes-a-difference.aspx

When designing an analog active filter, you may be overwhelmed with the list of factors to consider.

But, as you start to select your amplifier(s), I suggest that you start with the simple things: input bias current.

Yes, you also need to pay attention to amplifier bandwidth, slew rate, noise, common-mode voltage range (sometimes),

and offset voltage, but dealing with the input bias current has to be the easiest.

First of all, you need to know something about the circuit configurations that you will be using.

The most common configurations in use today are the Sallen-Key and multiple-feedback (MFB) topologies.

These topologies are used in lowpass, highpass, bandpass, and bandstop (notch) filters.

Let’s take a look at second-order, lowpass filters (Figure 1).

Figure 1. Second-order lowpass filters

Notice the resistors that connect directly to the inverting and/or non-inverting terminals.

This is the place where the input bias (IB+and IB-) current flows to create a voltage that looks like the amplifier’s offset voltage.

So, what value of resistors might you expect and what is the allowable amplifier input bias current?

The magnitude of the input bias current primarily depends on the amplifier’s silicon technology.

Figure 2 shows some typical input stages for CMOS and bipolar amplifiers.

The amount of current flowing in or out of the IB+ and IB- terminals depends on the amplifier technology and circuit design,

so it is hard to give an exact answer. However, you can make some general statements.

Figure 2. Typical differential input stages for CMOS (a) and bipolar (b) amplifiers

CMOS amplifiers typically generate input bias currents in a range of up to 400 pA.

If you find units of nanoamps up to several milliamps, that’s probably a bipolar amplifier.

More information about the input bias currents of amplifiers is available in my earlier blog,

How to read a precision op amp data sheet.”

Now, how big are the lowpass filter resistors in Figure 1?

Resistor values depend on the capacitor’s magnitude.

So, let’s first talk about the capacitors.

When designing a filter, whether it uses a lowpass, highpass, bandpass, or bandstop topology,

the capacitor technology should be C0G or NPO.

There are a lot of different types of capacitors such as X7R, Z5U, and Y5V.

But the C0G and NPO capacitors are set apart from the others because they have a low-voltage and low-frequency coefficients.

If these coefficients are not low, the capacitance values change as signals travel through the filter.

When the capacitors change, the filter response also changes.

I will go into more details about these capacitor characteristics next time,

but this fact limits the acceptable range for your filter capacitors.

C0G capacitor values range up to 100 nF.

Given this range, the approximate upper range of the resistors is 30 kOhms from my survey of

Gaussian to 6 dB, linear phase 0.05°,

Butterworth, 0.2 dB Chebyshev, linear phase 0.5°,

Bessel and Gaussian to 12 dB filters.

Now we have something to work with!

In Figure 1a, the voltage error caused by the resistors and IB+ is VOS-IB = (R1 + R2)*IB+.

To get the total offset error of this system you add VOS-IB to the amplifier’s offset voltage (VOS).

If you want the input offset error to be equal to or below 1.22 mV (12-bit LSB in a 5 V system),

then the maximum allowable input bias current for the Figure 1a circuits is 10 nA, with VOS-MAX = 200 uV.

This translates into using CMOS op amps or bipolar op amps with sufficiently low IB and low VOS.

You want to do a little research?

Look into these questions and find your answers by using the Texas Instruments

WEBENCH®Filter Designer program.

http://www.ti.com/tool/filterpro

Active Low-Pass Filter Design 低通滤波器设计的更多相关文章

  1. Sallen-Key Active Butterworth Low Pass Filter Calculator

    RC 2nd Order Passive Low Pass Filter The cut-off frequency of second order low pass filter is given ...

  2. [模拟电路] 2、Passive Band Pass Filter

    note: Some articles are very good in http://www.electronics-tutorials.ws/,I share them in the Cnblog ...

  3. PWM DAC Low Pass Filtering

    [TI博客大赛][原创]LM3S811之基于PWM的DAC http://bbs.ednchina.com/BLOG_ARTICLE_3005301.HTM http://www.fpga4fun.c ...

  4. IIR filter design from analog filter

    Analog filter和digital filter的联系: z变换与Laplace从数学上的关系为: 但这种关系在实际应用上不好实现,因此通常使用biliner transform(https: ...

  5. 使用MATLAB 2019 App Design 工具设计一个 电子日记App

    使用MATLAB 2019 App Design 工具设计一个 电子日记App1.1 前言:由于信号与系统课程需要,因此下载了MATLAB软件,加之对新款的执着追求,通过一些渠道,下载了MATLAB ...

  6. Design Principle vs Design Pattern 设计原则 vs 设计模式

    Design Principle vs Design Pattern设计原则 vs 设计模式 来源:https://www.tutorialsteacher.com/articles/differen ...

  7. Design Principles (设计原则)

    这是我在2018年4月写的英语演讲稿,可惜没人听得懂(实际上就没几个人在听). 文章的内容是我从此前做过的项目中总结出来的经验,从我们的寝室铃声入手,介绍了可扩展性.兼容性与可复用性等概念,最后提出良 ...

  8. [LeetCode] 355. Design Twitter 设计推特

    Design a simplified version of Twitter where users can post tweets, follow/unfollow another user and ...

  9. [LeetCode] Design Twitter 设计推特

    Design a simplified version of Twitter where users can post tweets, follow/unfollow another user and ...

随机推荐

  1. js记录用户在网站的浏览记录和停留时间

    by weber开发者 from http://weber.pub/ 本文地址: http://weber.pub/js记录用户行为浏览记录和停留时间/163.html 问题 公司想统计一个用户从进入 ...

  2. Arduino开发常见错误

    使用Ethernet时需要指定访问服务器的ip,我用的是本机做服务器.但是有一天重启了路由器,ip地址就变了!程序得跟着改! Arduino突然烧写不了程序:可能是正在运行的程序让arduino死机了 ...

  3. WebAPI初探

    由于即将要接手的新项目计划用ASP.NET MVC3来开发,所以最近一段时间一直在看相关的书或文章.因为之前在大学里也曾学习过MVC2开发,也做过几个简单的MVC2的小型测试项目,不过在后来工作以后主 ...

  4. Quartz.net 2.0的使用说明

    Quartz.NET是一个开源的作业调度框架,是OpenSymphony 的 Quartz API的.NET移植,它用C#写成,可用于WinForm和ASP.NET应用中.它提供了巨大的灵活性而不牺牲 ...

  5. Delphi实现文件关联

    文件关联为我们带来很多的方便.Delphi自带有注册表对象TRegistry,可以通过它取得或改变注册表相关键值的内容. Function GetAssociatedExec(FileExt: Str ...

  6. android 性能优化大纲

    性能优化系列 分为三个部分:视图篇 逻辑篇  和代码规范篇 . ------2016/9/6  视图篇      主要涵盖视图树层级优化.自定义视图.图片优化,常用布局性能缺陷等多个方面 .把平常经常 ...

  7. 【LeetCode】6 - ZigZag Conversion

    The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like ...

  8. 数往知来 asp.net 聊天室问题解决方案<十六>

      1:在服务端创建了一个负责监听的sokcet   //三个:采用TCP协议.              ListenSocket = new Socket(AddressFamily.InterN ...

  9. effective c++:尽量替换define,确保对象使用前初始化

    #define ASPECT_RATIO 1.653 名为ASPECT_RATIO的值在预编译阶段被替换成1.653,如果在这个常量上出现编译错误,我们可能会困惑1.653的值是什么意思,于是将因为跟 ...

  10. Canvas 2D绘制抗锯齿的1px线条

    当绘制1像素的线条时,发现多条线明显存在着粗细不均的问题,线条带有明显的锯齿. 事实上,Canvas的绘制线条指令都存在这个状况,如lineTo,arcTo,strokeRect. 解决方案是将Can ...