3505: [Cqoi2014]数三角形

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1171  Solved: 703
[Submit][Status][Discuss]

codevs3693 数三角形同题:http://codevs.cn/problem/3693/

Description

给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个。下图为4x4的网格上的一个三角形。

注意三角形的三点不能共线。

Input

输入一行,包含两个空格分隔的正整数m和n。

Output

输出一个正整数,为所求三角形数量。

Sample Input

2 2

Sample Output

76

数据范围
1<=m,n<=1000

HINT

 

Source

题解:

1、先不考虑三角形,从n*m的网格里面任意选取3个点,一共有多少种方案? C(n*m,3) 现在,这3个点必须要构成三角形,有哪种情况需要去除? 三点共线的情况。 我们用C(n*m,3)减去三点共线的情况,最后得到的就是答案。

2、一个n*m的网格,有多少种选法,选择3个点是三点共线的? 这是一个5*7的网格

如果固定左上角和右下角这两个点,一共有多少个点和它们共线?

3、

大三角形和小三角形是相似的 小三角形的直角边长x’和y’应该是大三角形的直角边长X和Y的约数 所能放下的点的个数-1是X/x’=Y/y’,这个数也是X的约数,同时也是Y的约数 所以最多能放gcd(X,Y)-1个点。

4、

回到刚才那个问题的话,一个n*m的网格,它的两条边的长度分别是n-1和m-1,所以对角线上最多有gcd(n-1,m-1)-1个点在格线上。 再看这道题本身,我们求有多少种选取三个点的选法,满足三点共线,可以分这两种情况 所在直线水平/竖直 所在直线是斜的

所在直线水平/竖直: n*C(m,3)+m*C(n,3) 所在直线是斜的: 先用一个双重循环,枚举三个点中以两头的两个点为对角线所构成的网格的大小 如果以这两个点为对角线构成了一个n’*m’的网格,则以它们为两头的点,一共有gcd(n’-1,m’-1)-1种选法可以三点共线

5、

AC代码:

#include<iostream>
#include<cstdio>
using namespace std;
#define ll unsigned long long
ll n,m;
ll gcd(ll a,ll b){
return !b?a:gcd(b,a%b);
}
ll C(ll x){
return x*(x-)/*(x-)/;
}
int main(){
cin>>n>>m;
ll ans=C((m+)*(n+));
for(int i=;i<=n;i++){
for(int j=;j<=m;j++){
if(i||j) ans-=(gcd(i,j)-)*(n-i+)*(m-j+)*(i&&j?:);
}
}
cout<<ans<<endl;
return ;
}

BZOJ 3505的更多相关文章

  1. bzoj 3505 数三角形 - 组合数学

    给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形. 注意三角形的三点不能共线. Input 输入一行,包含两个空格分隔的正整数m和n. Output 输出 ...

  2. bzoj 3505 [Cqoi2014]数三角形(组合计数)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3505 [题意] 在n个格子中任选3点构成三角形的方案数. [思路] 任选3点-3点共线 ...

  3. BZOJ 3505: [Cqoi2014]数三角形 数学

    3505: [Cqoi2014]数三角形 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/pr ...

  4. Bzoj 3505: [Cqoi2014]数三角形 数论

    3505: [Cqoi2014]数三角形 Time Limits: 1000 ms  Memory Limits: 524288 KB  Detailed Limits   Description

  5. bzoj 3505: [Cqoi2014]数三角形 组合数学

    3505: [Cqoi2014]数三角形 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 478  Solved: 293[Submit][Status ...

  6. BZOJ 3505: [Cqoi2014]数三角形( 组合数 )

    先n++, m++ 显然答案就是C(3, n*m) - m*C(3, n) - n*C(3, m) - cnt. 表示在全部点中选出3个的方案减去不合法的, 同一行/列的不合法方案很好求, 对角线的不 ...

  7. BZOJ 3505: [Cqoi2014]数三角形 [组合计数]

    3505: [Cqoi2014]数三角形 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个. 注意三角形的三点不能共线. 1<=m,n<=1000 $n++ m++$ $ans ...

  8. BZOJ 3505 [Cqoi2014]数三角形

    3505: [Cqoi2014]数三角形 Description 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个.下图为4x4的网格上的一个三角形.注意三角形的三点不能共线. Input ...

  9. BZOJ 3505 [Cqoi2014]数三角形(组合数学)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3505 [题目大意] 给定一个nxm的网格,请计算三点都在格点上的三角形共有多少个. 注 ...

随机推荐

  1. Codeforces 602B Approximating a Constant Range(想法题)

    B. Approximating a Constant Range When Xellos was doing a practice course in university, he once had ...

  2. Spring EL ternary operator (if-then-else) example

    Spring EL supports ternary operator , perform "if then else" conditional checking. For exa ...

  3. [iOS 多线程 & 网络 - 1.3] - NSOperation

    A.NSOperation的基本使用 1.NSOperation的作用 配合使用NSOperation和NSOperationQueue也能实现多线程编程 NSOperation和NSOperatio ...

  4. php-fpm占用系统资源分析

    故障检测 1.别的先不管,先top看一下cpu.ram.swap哪个比较紧张. 由上图分析,可以看出共有602个进程,其中有601个进程休眠了.这好像有点不对劲,内核进程也就80个左右,加上memca ...

  5. java数字保留两位小数四舍五入

    import java.math.BigDecimal; import java.text.DecimalFormat; import java.text.NumberFormat; public c ...

  6. WCF序列化与反序列化问题

    转自:http://www.cnblogs.com/wangweimutou/p/4505447.html WCF包含很多封装的内部机制,这些是我们在编写程序时不会经常看到的.比如上一篇讲解的Mess ...

  7. 学习LINQ,发现一个好的工具。LINQPad!!

    今日学习LINQ,发现一个好的工具.LINQPad!! 此工具的好处在于,不需要在程序内执行,直接只用工具测试.然后代码通过即可,速度快,简洁方便. 可以生成其LINQ查询对应的lambda和SQL语 ...

  8. ASCII,GB2312,GBK,Unicode,Utf-8

    1.ASCII:American Stardand Code for Information Interchange,是当时美国制定出来的一套编码系统,使用7位或8位二进制来表示西文字符,0-31以及 ...

  9. [Angular 2] Start with Angular2

    Create a index.html: <!DOCTYPE html> <html> <head> <title>Really Understandi ...

  10. Computer Science Theory for the Information Age-6: 学习理论——VC定理的证明

    VC定理的证明 本文讨论VC理论的证明,其主要内容就是证明VC理论的两个定理,所以内容非常的枯燥,但对于充实一下自己的理论知识也是有帮助的.另外,VC理论属于比较难也比较抽象的知识,所以我总结的这些证 ...