bzoj 4004 [JLOI2015]装备购买 拟阵+线性基
[JLOI2015]装备购买
Time Limit: 20 Sec Memory Limit: 128 MB
Submit: 1820 Solved: 547
[Submit][Status][Discuss]
Description
Input
Output
一行两个数,第一个数表示能够购买的最多装备数量,第二个数表示在购买最多数量的装备的情况下的最小花费
Sample Input
1 2 3
3 4 5
2 3 4
1 1 2
Sample Output
HINT
以后再开一篇blog,发现对于线性基不是特别了解,线性基应该是一种概念吧,不是特别清楚
不是针对xor的吧,这里的话就是和线性基构造方式差不多,如果当前位置有,并且线性基里没有,就
加入,否则就减去相当的倍数,用拟阵证明是个极大线性无关组。
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstdio> #define double long double
#define eps 0.00001
#define N 510
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-;ch=getchar();}
while(isdigit(ch)){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return x*f;
} int n,m,ans,num;
int vis[N];
struct Node
{
double b[N];
int val;
}a[N]; bool cmp(Node x,Node y){return x.val<y.val;}
int main()
{
n=read(),m=read();
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
scanf("%Lf",&a[i].b[j]);
for (int i=;i<=n;i++) a[i].val=read();
sort(a+,a+n+,cmp);
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
if (fabs(a[i].b[j])>eps)
{
if (!vis[j])
{
vis[j]=i;
ans+=a[i].val;
num++;
break;
}
else
{
double t=(double)a[i].b[j]/(double)a[vis[j]].b[j];
for (int k=j;k<=m;k++)
a[i].b[k]-=t*a[vis[j]].b[k];
}
}
printf("%d %d\n",num,ans);
}
bzoj 4004 [JLOI2015]装备购买 拟阵+线性基的更多相关文章
- bzoj 4004: [JLOI2015]装备购买 拟阵 && 高消
4004: [JLOI2015]装备购买 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 337 Solved: 139[Submit][Status ...
- bzoj 4004 [JLOI2015]装备购买——拟阵证明贪心+线性基
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4004 看Zinn博客水过去…… 运用拟阵可以证明按价格从小到大买的贪心是正确的.但自己还不会 ...
- BZOJ_4004_[JLOI2015]装备购买_线性基
BZOJ_4004_[JLOI2015]装备购买_线性基 Description 脸哥最近在玩一款神奇的游戏,这个游戏里有 n 件装备,每件装备有 m 个属性,用向量zi(aj ,.....,am) ...
- BZOJ 4004: [JLOI2015]装备购买
4004: [JLOI2015]装备购买 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1154 Solved: 376[Submit][Statu ...
- [JLOI2015]装备购买(线性基)
[JLOI2015]装备购买 题目描述 脸哥最近在玩一款神奇的游戏,这个游戏里有 nn 件装备,每件装备有 \(m\) 个属性,用向量 \(\mathbf{z_i}\)=\((a_1, \ldots ...
- BZOJ 4004: [JLOI2015]装备购买 高斯消元解线性基
BZOJ严重卡精,要加 $long$ $double$ 才能过. 题意:求权和最小的极大线性无关组. 之前那个方法解的线性基都是基于二进制拆位的,这次不行,现在要求一个适用范围更广的方法. 考虑贪心 ...
- BZOJ 4004 [JLOI2015]装备购买 | 线性基
题目链接 Luogu P3265 题解 非常正常的线性基! 但是我不会线性基-- (吐槽:#define double long double 才过--) #include <cstdio> ...
- BZOJ 4004 [JLOI2015]装备购买 ——线性基
[题目分析] 题目很简单,就是要维护一个实数域上的线性基. 仿照异或空间的线性基的方法,排序之后每次加入一个数即可. 卡精度,开long double 和 1e-6就轻松水过了. [代码] #incl ...
- 洛谷P3265 [JLOI2015]装备购买 [线性基]
题目传送门 装备购买 格式难调,题面就不放了. 分析: 一句话,有$n$件物品,每件物品有$m$个属性和一个花费值,如果一个装备的属性值可以由其他装备的属性值改变系数后组合得到那就不买,求购买最多装备 ...
随机推荐
- 博弈dp 以I Love this Game! POJ - 1678 为例
写在前面的话 知识基础:一些基础的博弈论的方法,动态规划的一些知识 前言:博弈论就是一些关于策略或者游戏之间的最优解,动态规划就是对于一些状态之间转移的一些递推式(or 递归),dp分为很多很多种,比 ...
- Windows10 快捷键
windows 10快捷键: F1 打开帮助 F2 重命名 F3 打开搜索文件和文件夹 F4 打开地址栏常用的地址 F5 刷新 F11 全屏 选择文件和内容: shift + 上下左右键选择连续的 ...
- react项目中引入百度地图打包报错问题
一.我正常引入百度地图,调试时候是好使的,但是打包时候就报错 引入方法如下: 报错如图 正常调试是好使的,但是打包报这个错,解析不了这个BMap,那么怎么办呢? 然后我就转用了window办法,虽然因 ...
- 博科brocade光纤交换机alias-zone的划分-->实操案例
一,图形化操作 光纤交换机作为SAN网络的重要组成部分,在日常应用中非常普遍,本次将以常用的博科交换机介绍基本的配置方法. 博科300实物图: 环境描述: 如上图,四台服务器通过各自的双HBA卡连接至 ...
- PHP.44-TP框架商城应用实例-后台19-权限管理-RBAC需求分析
RBAC:Role Based Access Control:基于角色的访问控制 需求分析:[类似效果如下图] 1.权限,角色,管理员 2.权限管理[无限级] 注意:权限会被分配给角色,而不是给管理员 ...
- Linux下中文乱码问题
记录一下配置centos的时候遇到的一些常见问题 写了一个python脚本,有中文注释,而且会输出一些用户名称,其中包含中文字符.显示的时候出现乱码. 解决方案: 参见博客: Linux基础:中文显示 ...
- bootstrap重新设计checkbox样式
文章采集于: https://www.cnblogs.com/GumpYan/p/7845445.html#undefined 在原文基础上修改了勾勾的内容,直接采用bootstrap字体库.修改了横 ...
- 27、理解js的继承机制(转载自阮一峰)
Javascript继承机制的设计思想 作者: 阮一峰 日期: 2011年6月 5日 我一直很难理解Javascript语言的继承机制. 它没有"子类"和"父类&qu ...
- cocos2d-x 精灵
Sprite有两个父类:BatchableNode批量创建精灵(大量重复的比如子弹)和pyglet.sprite.Sprite. 精灵的创建
- Linux---CentOS 定时执行脚本配置
非常多时候我们有希望server定时去运行一个脚本来触发一个操作.比方使用七牛的工具上传,假设同步文件中面有新添加一个文件,这个时候我们能够提供定时脚本去完毕我们须要的同步命令(七牛的qrsbox工具 ...