Description

You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment. 
That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?" 
For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.

Input

The first line of the input file contains n --- the size of the array, and m --- the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000). 
The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given. 
The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).

Output

For each question output the answer to it --- the k-th number in sorted a[i...j] segment.

Sample Input

7 3
1 5 2 6 3 7 4
2 5 3
4 4 1
1 7 3

Sample Output

5
6
3

Hint

This problem has huge input,so please use c-style input(scanf,printf),or you may got time limit exceed.
 
今天主要来学习一个划分树 ,也就是入门吧  ,我先拓宽一下知识面吧 ,
感觉只有拓宽算法知识面才能更加深入 学习更复杂的算法
 
 划分树板子
 
 #include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long LL;
const int maxn = 1e5 + ;
int a[maxn], sorted[maxn];
int num[][maxn], val[][maxn]; void build(int l, int r, int ceng) {
if (l == r) return ;
int mid = (l + r) >> , same = mid - l + ;
for (int i = l ; i <= r ; i++)
if (val[ceng][i] < sorted[mid]) same--;
int ln = l, rn = mid + ;
for (int i = l ; i <= r ; i++) {
if (i == l) num[ceng][i] = ;
else num[ceng][i] = num[ceng][i - ];
if (val[ceng][i] < sorted[mid] || val[ceng][i] == sorted[mid] && same > ) {
val[ceng + ][ln++] = val[ceng][i];
num[ceng][i]++;
if (val[ceng][i] == sorted[mid]) same--;
} else val[ceng + ][rn++] = val[ceng][i];
}
build(l, mid, ceng + );
build(mid + , r, ceng + );
} int query(int ceng, int L, int R, int l, int r, int k) {
if (L == R) return val[ceng][L];
int lsum;
if (l == L) lsum = ;
else lsum = num[ceng][l - ];
int tot = num[ceng][r] - lsum;
if (tot >= k) return query(ceng + , L, (L + R) / , L + lsum, L + num[ceng][r] - , k);
else {
int lr = (L + R) / + + (l - L - lsum);
return query(ceng + , (L + R) / + , R, lr, lr + r - l + - tot - , k - tot);
}
} int main() {
int n, m, l, r, k;
while(scanf("%d%d", &n, &m) != EOF) {
for (int i = ; i <= n ; i++) {
scanf("%d", &val[][i]);
sorted[i] = val[][i];
}
sort(sorted + , sorted + n + );
build(, n, );
while(m--) {
scanf("%d%d%d", &l, &r, &k);
printf("%d\n", query(, , n, l, r, k ));
}
}
return ;
}

poj 2104 (划分树模板)的更多相关文章

  1. K-th Number POJ - 2104 划分树

    K-th Number You are working for Macrohard company in data structures department. After failing your ...

  2. poj 2104 划分树

    思路:裸的划分树 #include<iostream> #include<algorithm> #include<cstring> #include<cstd ...

  3. hdu 4417,poj 2104 划分树(模版)归并树(模版)

    这次是彻底把划分树搞明确了,与此同一时候发现了模版的重要性.敲代码一个字符都不能错啊~~~ 划分树具体解释:点击打开链接 题意:求一组数列中随意区间不大于h的个数. 这个题的做法是用二分查询  求给定 ...

  4. POJ 2104 主席树模板题

    #include <iostream> #include <cstdio> #include <algorithm> int const maxn = 200010 ...

  5. hdu 2665 Kth number(划分树模板)

    http://acm.hdu.edu.cn/showproblem.php?pid=2665 [ poj 2104 2761 ]  改变一下输入就可以过 http://poj.org/problem? ...

  6. K-th Number Poj - 2104 主席树

    K-th Number Poj - 2104 主席树 题意 给你n数字,然后有m次询问,询问一段区间内的第k小的数. 解题思路 这个题是限时训练做的题,我不会,看到这个题我开始是拒绝的,虽然题意清晰简 ...

  7. poj2104(划分树模板)

    poj2104 题意 给出一个序列,每次查询一个区间,要求告诉这个区间排序后的第k个数. 分析 划分树模板,O(mlogn). 建树.根据排序之后的数组,对于一个区间,找到中点的数,将整个区间分为左右 ...

  8. poj2104(划分树模板)

    poj2104 题意 给出一个序列,每次查询一个区间,要求告诉这个区间排序后的第k个数. 分析 划分树模板,O(mlogn). 建树.根据排序之后的数组,对于一个区间,找到中点的数,将整个区间分为左右 ...

  9. [poj 2104]主席树+静态区间第k大

    题目链接:http://poj.org/problem?id=2104 主席树入门题目,主席树其实就是可持久化权值线段树,rt[i]维护了前i个数中第i大(小)的数出现次数的信息,通过查询两棵树的差即 ...

随机推荐

  1. Python3 time模块&datetime模块&random模块

    ''' time模块 ''' # import time # print(help(time)) # help()提供帮助 # print(time.time()) # 1970年开始到现在的秒数(时 ...

  2. 【EXCEL】SUMIF(条件を指定して数値を合計する)

    Mirocrosoft Excel

  3. 如何在WIN7_64环境下安装Oracle10g_64位版本

    转载请注明出处http://www.cnblogs.com/SharpL/p/4338638.html 1.如果之前安装过Oracle软件,建议完全卸载(究竟有没有必要_不知道_我是这么做的) 2.清 ...

  4. ChipScope软件使用

    内容组织 1.建立工程  2.插入及配置核  2.1运行Synthesize  2.2新建cdc文件  2.3 ILA核的配置  3. Implement and generate programmi ...

  5. Hbase数据IO

    场景及方案分析 场景1:logs --> HBase logs -> flume -> hfile -> import -> HBase (实时) csv导入HBase ...

  6. 通过transpose和flip实现图像旋转90/180/270度

    在fbc_cv库中,提供了对图像进行任意角度旋转的函数rotate,其实内部也是调用了仿射变换函数warpAffine.如果图像仅是进行90度倍数的旋转,是没有必要用warpAffine函数的.这里通 ...

  7. LeetCode:16. 3Sum Closest(Medium)

    1. 原题链接 https://leetcode.com/problems/3sum-closest/description/ 2. 题目要求 数组S = nums[n]包含n个整数,找出S中三个整数 ...

  8. spring boot 中文文档地址

    spring boot 中文文档地址     http://oopsguy.com/documents/springboot-docs/1.5.4/index.html Spring Boot 参考指 ...

  9. Android Open Source Projects(汇总与整理)

    Android Open Source Projects 目前包括: Android开源项目第一篇——个性化控件(View)篇  包括ListView.ActionBar.Menu.ViewPager ...

  10. Python 3基础教程32-正则

    本文介绍Python的正则,通过本文介绍和一个练习,对正则有一个基本了解就可以. # 正则表达式 ''' 正则表达式是有一些特殊字符组成,能够帮你找到一些符合一定规则的字符串 先来了解几个符号所代表的 ...