二分查找

二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步查找前一子表,否则进一步查找后一子表。重复以上过程,直到找到满足条件的记录,使查找成功,或直到子表不存在为止,此时查找不成功。
 
 
这道题就是高中的一个定理,好像是零点定理。
零点定理:
设函数f(x)在闭区间[a,b]上连续,且f(a)与 f(b)异号(即f(a)× f(b)<0),那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点ξ(a<ξ<b)使f(ξ)=0。-----百度百科
头尾相乘为<0,则有解,>0则无解。
 

UVA10341.Solve It

 Solve the equation:
p∗e−x + q∗sin(x) + r∗cos(x) + s∗tan(x) + t∗x2 + u = 0
where 0 ≤ x ≤ 1.
Input
Input consists of multiple test cases and terminated by an EOF. Each test case consists of 6 integers in a single line: p, q, r, s, t and u (where 0 ≤ p, r ≤ 20 and −20 ≤ q,s,t ≤ 0). There will be maximum 2100 lines in the input file.
Output
For each set of input, there should be a line containing the value of x, correct up to 4 decimal places, or the string ‘No solution’, whichever is applicable.
Sample Input
0 0 0 0 -2 1

1 0 0 0 -1 2

1 -1 1 -1 -1 1
Sample Output
0.7071

No solution

0.7554

代码如下:

#include<stdio.h>
#include<math.h>
const double eps=1e-7;
int p,q,r,s,t,u;
double fun(double x){
return p*exp(-x)+q*sin(x)+r*cos(x)+s*tan(x)+t*x*x+u;
}
int main(){
while(~scanf("%d%d%d%d%d%d",&p,&q,&r,&s,&t,&u)){
double maxx=1.0,minn=0.0,mid;
if(fun(maxx)*fun(minn)>){
printf("No solution\n");
continue;
}
while(minn+eps<maxx){
mid=(maxx+minn)/2.0;
if(fun(mid)<=) maxx=mid;
else minn=mid;
}
printf("%.4f\n",mid);
}
return ;
}
 
 

UVA 10341.Solve It-二分查找的更多相关文章

  1. UVA 10341 Solve It 二分

    题目大意:给6个系数,问是否存在X使得等式成立 思路:二分.... #include <stdio.h> #include <math.h> #define EEE 2.718 ...

  2. UVA 10341 Solve It 解方程 二分查找+精度

    题意:给出一个式子以及里面的常量,求出范围为[0,1]的解,精度要求为小数点后4为. 二分暴力查找即可. e^(-n)可以用math.h里面的exp(-n)表示. 代码:(uva该题我老是出现Subm ...

  3. uva10341 - solve it (二分查找)

    题目:uva10341-solve it 题目大意:求解给定的方程式解题思路:由于这个方程式在给定的x的范围内是单调递减的.所以能够用二分查找来尝试x的值.这里的 x是要求保留4小数,所以当区间缩小到 ...

  4. UVa 10341 - Solve It【经典二分,单调性求解】

    原题: Solve the equation:         p*e-x + q*sin(x) + r*cos(x) + s*tan(x) + t*x2 + u = 0         where  ...

  5. 【数值方法,水题】UVa 10341 - Solve It

    题目链接 题意: 解方程:p ∗ e^(−x) + q ∗ sin(x) + r ∗ cos(x) + s ∗ tan(x) + t ∗ x^2 + u = 0 (0 <= x <= 1) ...

  6. UVa 10341 - Solve It

    题目:给一个方程,求解方程的解.已给出解的范围,并且可知方程等号左侧的函数是递减的,可用二分法进行试探,直到得出给定误差范围内的解. #include <cstdio> #include ...

  7. UVa 1152 和为0的4个值(二分查找)

    https://vjudge.net/problem/UVA-1152 题意:给定4个n元素集合A,B,C,D,要求分别从中选取一个元素a,b,c,d,使得a+b+c+d=0.问有多少种取法. 思路: ...

  8. UVA.10474 Where is the Marble ( 排序 二分查找 )

    UVA.10474 Where is the Marble ( 排序 二分查找 ) 题意分析 大水题一道.排序好找到第一个目标数字的位置,返回其下标即可.暴力可过,强行写了一发BS,发现错误百出.应了 ...

  9. UVa 10539 (筛素数、二分查找) Almost Prime Numbers

    题意: 求正整数L和U之间有多少个整数x满足形如x=pk 这种形式,其中p为素数,k>1 分析: 首先筛出1e6内的素数,枚举每个素数求出1e12内所有满足条件的数,然后排序. 对于L和U,二分 ...

随机推荐

  1. C#中的SubString()的用法

    先看语法: String.SubString(int index,int length)     index:开始位置,从0开始       length:你要取的子字符串的长度 例子: using ...

  2. 纯真IP数据库(qqwry.dat)转换成最新的IP数据库格式(ipwry.dat)

    纯真IP数据库(qqwry.dat)转换成最新的IP数据库格式(ipwry.dat) 转载自:http://blog.cafeboy.org/2011/02/25/qqwry-to-ipwry/ ht ...

  3. 【题解】SDOI2011消耗战

    虚树模板题~洛谷P2495 第一次写虚树,感觉好厉害呀~首先,这道题目的树形dp是非常显然的,要控制一个点&其子树所有点,要么在子树内部割边,要么直接切点该点与父亲的连边.所以dp[u]表示控 ...

  4. ext radiogroup如何取值和设值

    var radios = Ext.create('Ext.form.Panel', { title: 'RadioGroup Example', width: 300, height: 125, bo ...

  5. 论文讨论&&思考《Deformable Convolutional Networks》

    这篇论文真是让我又爱又恨,可以说是我看过的最认真也是最多次的几篇paper之一了,首先deformable conv的思想我觉得非常好,通过end-to-end的思想来做这件事也是极其的make se ...

  6. POJ1637:Sightseeing tour(混合图的欧拉回路)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10581   Accepted: 4466 ...

  7. Elasticsearch 5.2.1Cluster 搭建

    1.安装java cd ~ wget --no-cookies --no-check-certificate --header "Cookie: gpw_e24=http%3A%2F%2Fw ...

  8. PHP正则替换preg_replace函数的使用

    <?php $str="as2223adfsf0s4df0sdfsdf"; echo preg_replace("/0/","",$s ...

  9. notepad++中快速插入当前时间方法

    转载自:http://blog.csdn.net/donghustone/article/details/7436483 在notepad++中快速插入当前时间方法: 插件是notepad++的一大优 ...

  10. domReady的兼容性实现方法

    一.为何要实现domReay方法? 举例: <!DOCTYPE html> <html lang="en"> <head> <meta c ...