bzoj 2005 NOI 2010 能量采集
我们发现对于一个点(x,y),与(0,0)连线上的点数是gcd(x,y)-1
那么这个点的答案就是2*gcd(x,y)-1,那么最后的答案就是所有点
的gcd值*2-n*m,那么问题转化成了求每个点的gcd值的Σ
也即:Σi<=n Σj<=m gcd(i,j)
那么首先我们知道Σphi(d) d|n=n,所以我们可以将这个式子转化成
Σi<=n Σj<=m Σ d|gcd(i,j) phi(d)
那么对于矩阵n*m来说,我们将phi(d)累加了floor(n/d)*floor(m/d)次
所以对于所有的d,答案就是Σ d<=min(n,m) floor(n/d)*floor(m/d)*phi(d)
我们可以线性筛出欧拉函数表,然后线性的求解。
/**************************************************************
Problem:
User: BLADEVIL
Language: Pascal
Result: Accepted
Time: ms
Memory: kb
****************************************************************/
//By BLADEVIL
var
i, j :longint;
prime, mindiv, phi :array[..] of int64;
ans :int64;
n, m :int64;
procedure swap(var a,b:int64);
var
c :int64;
begin
c:=a; a:=b; b:=c;
end;
begin
read(n,m);
if n>m then swap(n,m);
phi[]:=;
for i:= to n do
begin
if mindiv[i]= then
begin
inc(prime[]);
prime[prime[]]:=i;
mindiv[i]:=i;
phi[i]:=i-;
end;
for j:= to prime[] do
begin
if i*prime[j]>m then break;
mindiv[i*prime[j]]:=prime[j];
if i mod prime[j]= then
begin
phi[i*prime[j]]:=phi[i]*prime[j];
break;
end else
phi[i*prime[j]]:=phi[i]*(prime[j]-);
end;
end;
for i:= to n do
ans:=ans+(n div i)*(m div i)*phi[i];
ans:=ans*-n*m;
writeln(ans);
end.
bzoj 2005 NOI 2010 能量采集的更多相关文章
- [bzoj 2005][NOI 2010]能量采集(容斥原理+递推)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2005 分析:首先易得ans=∑gcd(x,y)*2+1 然后我就布吉岛了…… 上网搜了下题解, ...
- ●BZOJ 2005 NOI 2010 能量采集
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2005 题解: 一个带有容斥思想的递推.%%% 首先,对于一个点 (x,y) 在路径 (0,0 ...
- bzoj 2005 & 洛谷 P1447 [ Noi 2010 ] 能量采集 —— 容斥 / 莫比乌斯反演
题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005 洛谷 P1447 https://www.luogu.org/ ...
- 【BZOJ 2005】[Noi2010]能量采集
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- 【BZOJ 2005】[Noi2010]能量采集 (容斥原理| 欧拉筛+ 分块)
能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋 ...
- [NOI 2010]能量采集
Description 题库链接 给你一个 \(n\times m\) 的坐标轴.对于坐标轴的每一个正整数整点 \((x,y)\) 其对答案产生的贡献为 \(2k+1\) ,其中 \(k\) 表示这个 ...
- [BZOJ 2006] [NOI 2010]超级钢琴(贪心+ST表+堆)
[BZOJ 2006] [NOI 2010]超级钢琴(贪心+ST表+堆) 题面 给出一个长度为n的序列,选k段长度在L到R之间的区间,一个区间的值等于区间内所有元素之的和,使得k个区间的值之和最大.区 ...
- BZOJ 2015:[Noi2010]能量采集(数论+容斥原理)
2005: [Noi2010]能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物 ...
- ●BZOJ 2006 NOI 2010 超级钢琴
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2006 题解: RMQ + 优先队列 (+ 前缀) 记得在一两个月前,一次考试考了这个题目的简 ...
随机推荐
- iOS URL加解密
URL加解密 背景介绍 iOS 下URL加解密,项目使用AFNetworking 虽然是使用HTTPS,但是从安全方面考虑,在很多情况下还是需要对url的参数进行加密的. 接口如 https://19 ...
- ASP NET Core ---REST & HTTP GET
参照 草根专栏- ASP.NET Core + Ng6 实战:https://v.qq.com/x/page/h0764n405ll.html 一.REST (Representational Sta ...
- TTY锁屏与解锁
今天在tmux中使用vim时,不小心按了CTRL+S,结果整个vim不能使用了,在网上查到这里会有锁屏的问题,具体如下: 在tmux中,按CTRL+S,锁屏,按CTRL+Q,解锁.与系统的锁屏和解锁是 ...
- 阿里云SLB漏选“健康检查正常的http状态码”导致url重定向失败问题处理
背景: 一客户将线下电商网站迁移到阿里云上,公网出口使用阿里云SLB,SLB后端实例为ECS(webserver)web服务使用nginx.后端APP服务器使用了tomcat:to ...
- 寻找完全数(C++)
[问题描述] 输入一个大于 1 的正整数 n,请你将大于 1 和小于或等于 n 的所有完全数输出.所谓完全数就是因子(不算其本身)之和等于它本身的数.例如 1+2+4+7+14=28,所以 28 是完 ...
- 机器学习/逻辑回归(logistic regression)/--附python代码
个人分类: 机器学习 本文为吴恩达<机器学习>课程的读书笔记,并用python实现. 前一篇讲了线性回归,这一篇讲逻辑回归,有了上一篇的基础,这一篇的内容会显得比较简单. 逻辑回归(log ...
- LeetCode 82 ——删除排序链表中的重复元素 II
1. 题目 2. 解答 新建一个链表,并添加一个哨兵结点,从前向后开始遍历链表. 如果下一个结点的值和当前结点的值相等,则循环向后遍历直到找到一个和当前结点值不相等的结点: 反之,如果下一个结点的值和 ...
- Mapper的方式总结
Mapper的方式总结: <mappers> <!-- 通过package元素将会把指定包下面的所有Mapper接口进行注册 --> <package name=&quo ...
- 福大软工1816:Alpha(1/10)
Alpha 冲刺 (1/10) 队名:第三视角 组长博客链接 本次作业链接 团队部分 团队燃尽图 工作情况汇报 张扬(组长) 过去两天完成了哪些任务: 文字/口头描述: 1.自己学习wxpy.pyqt ...
- ASP.NET 概述
https://msdn.microsoft.com/zh-cn/library/4w3ex9c2(VS.100).aspx ASP.NET 概述 更新:2007 年 11 月 ASP.NET 是一个 ...