基于python的数学建模---传染病六个模型
六个模型的区别
SI-Model
import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,I_0) def funcSI(inivalue,_):
Y = np.zeros(2)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[1]) / N + gamma * X[1]
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSI,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.title('SI Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()
SIS-Model
import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# S_0为易感者的初始人数
S_0 = N - I_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,I_0) def funcSIS(inivalue,_):
Y = np.zeros(2)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0]) / N * X[1] + gamma * X[1]
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSIS,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.title('SIS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()
SIR-Model
import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,I_0,R_0) def funcSIR(inivalue,_):
Y = np.zeros(3)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[1]) / N
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
# 治愈个体变化
Y[2] = gamma * X[1]
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSIR,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,2],color = 'green',label = 'Recovery',marker = '.')
plt.title('SIR Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()
SIRS-Model
import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.25
# gamma为恢复率系数
gamma = 0.05
# Ts为抗体持续时间
Ts = 7
# I_0为感染者的初始人数
I_0 = 1
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - R_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,I_0,R_0) def funcSIRS(inivalue,_):
Y = np.zeros(3)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[1]) / N + X[2] / Ts
# 感染个体变化
Y[1] = (beta * X[0] * X[1]) / N - gamma * X[1]
# 治愈个体变化
Y[2] = gamma * X[1] - X[2] / Ts
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSIRS,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,2],color = 'green',label = 'Recovery',marker = '.')
plt.title('SIRS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()
SEIR-Model
import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.6
# gamma为恢复率系数
gamma = 0.1
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0) def funcSEIR(inivalue,_):
Y = np.zeros(4)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[2]) / N
# 潜伏个体变化
Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te
# 感染个体变化
Y[2] = X[1] / Te - gamma * X[2]
# 治愈个体变化
Y[3] = gamma * X[2]
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSEIR,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'orange',label = 'Exposed',marker = '.')
plt.plot(RES[:,2],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,3],color = 'green',label = 'Recovery',marker = '.') plt.title('SEIR Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()
SEIRS-Model
import scipy.integrate as spi
import numpy as np
import matplotlib.pyplot as plt # N为人群总数
N = 10000
# β为传染率系数
beta = 0.6
# gamma为恢复率系数
gamma = 0.1
# Ts为抗体持续时间
Ts = 7
# Te为疾病潜伏期
Te = 14
# I_0为感染者的初始人数
I_0 = 1
# E_0为潜伏者的初始人数
E_0 = 0
# R_0为治愈者的初始人数
R_0 = 0
# S_0为易感者的初始人数
S_0 = N - I_0 - E_0 - R_0
# T为传播时间
T = 150 # INI为初始状态下的数组
INI = (S_0,E_0,I_0,R_0) def funcSEIRS(inivalue,_):
Y = np.zeros(4)
X = inivalue
# 易感个体变化
Y[0] = - (beta * X[0] * X[2]) / N + X[3] / Ts
# 潜伏个体变化
Y[1] = (beta * X[0] * X[2]) / N - X[1] / Te
# 感染个体变化
Y[2] = X[1] / Te - gamma * X[2]
# 治愈个体变化
Y[3] = gamma * X[2] - X[3] / Ts
return Y T_range = np.arange(0,T + 1) RES = spi.odeint(funcSEIRS,INI,T_range) plt.plot(RES[:,0],color = 'darkblue',label = 'Susceptible',marker = '.')
plt.plot(RES[:,1],color = 'orange',label = 'Exposed',marker = '.')
plt.plot(RES[:,2],color = 'red',label = 'Infection',marker = '.')
plt.plot(RES[:,3],color = 'green',label = 'Recovery',marker = '.') plt.title('SEIRS Model')
plt.legend()
plt.xlabel('Day')
plt.ylabel('Number')
plt.show()
潜伏期的高峰都会在传染期高峰的前面
基于python的数学建模---传染病六个模型的更多相关文章
- Python小白的数学建模课-09 微分方程模型
小白往往听到微分方程就觉得害怕,其实数学建模中的微分方程模型不仅没那么复杂,而且很容易写出高水平的数模论文. 本文介绍微分方程模型的建模与求解,通过常微分方程.常微分方程组.高阶常微分方程 3个案例手 ...
- 使用Python scipy linprog 线性规划求最大值或最小值(使用Python学习数学建模笔记)
函数格式 scipy.optimize.linprog(c, A_ub=None, b_ub=None, A_eq=None, b_eq=None, bounds=None, method='simp ...
- 舆论的力量---数学建模初探(SI模型)
在高中时除了物理竞赛没有学习外,竞赛的五大学科剩下的四门均有所涉猎及参加,因而精力分散太多.因此下定决心大学时可以广泛涉猎知识,但是主攻的竞赛只能有两个ACM和MCM,如今虽然高考完挂,但学术之心尚存 ...
- 基于python yield机制的异步操作同步化编程模型
又一个milestone即将结束,有了些许的时间总结研发过程中的点滴心得,今天总结下如何在编写python代码时对异步操作进行同步化模拟,从而提高代码的可读性和可扩展性. 游戏引擎一般都采用分布式框架 ...
- Python小白的数学建模课-B5. 新冠疫情 SEIR模型
传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. 考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫的传染病. 本 ...
- Python小白的数学建模课-B6. 新冠疫情 SEIR 改进模型
传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SEIR 模型考虑存在易感者.暴露者.患病者和康复者四类人群,适用于具有潜伏期.治愈后获得终身免疫 ...
- Python小白的数学建模课-B4. 新冠疫情 SIR模型
Python小白的数学建模课-B4. 新冠疫情 SIR模型 传染病的数学模型是数学建模中的典型问题,常见的传染病模型有 SI.SIR.SIRS.SEIR 模型. SIR 模型将人群分为易感者(S类). ...
- Python数学建模-01.新手必读
Python 完全可以满足数学建模的需要. Python 是数学建模的最佳选择之一,而且在其它工作中也无所不能. 『Python 数学建模 @ Youcans』带你从数模小白成为国赛达人. 1. 数学 ...
- Python小白的数学建模课-16.最短路径算法
最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径. 在图论中,最短路径长度与最短路径距离却是不同的概念和问题,经常会被混淆. 求最短路径长度的常用算法是 Dijkst ...
- Python小白的数学建模课-15.图论基本概念
图论中所说的图,不是图形图像或地图,而是指由顶点和边所构成的图形结构. 图论不仅与拓扑学.计算机数据结构和算法密切相关,而且正在成为机器学习的关键技术. 本系列结合数学建模的应用需求,来介绍 Netw ...
随机推荐
- 03 最小CMake项目
03 最小CMake项目 所有CMake项目都从一个CMakeLists.txt文件开始,此文件应该放在源代码树的最顶层目录下.可以将CMakeLists.txt想象成CMake项目文件,定义了从源和 ...
- Unity2D-Dash && SpeedUp
Introduction 原理: 角色位置改变时,每隔一段时间记录角色的位置,然后在记录的位置上放置一个图片,在图片出现之后过一段时间就让图片渐渐消失 简述实现步骤: 1.在Unity中Creat ...
- 关于 JavaScript 中 null 的一切
原文地址:Everything about null in JavaScript 原文作者:Dmitri Pavlutin 译者:Gopal JavaScript 有两种类型:原始类型(strings ...
- Java 多线程:锁(一)
Java 多线程:锁(一) 作者:Grey 原文地址: 博客园:Java 多线程:锁(一) CSDN:Java 多线程:锁(一) CAS 比较与交换的意思 举个例子,内存有个值是 3,如果用 Java ...
- Git Rebase-提交整洁之道
git rebase git rebase是一个非常有用的命令,但知道和用的人非常少,今天介绍一下其作用 git rebase -i 作用:常用来合并多个相同目的的提交. 交互式有下面几个命令,常用命 ...
- typora收费了,最后一个免费版提供下载
typora收费了,在这里,博主提供最后一个免费版下载,地址如下,顺便把typora导入和导出word时需要的工具也一同提供.最看不惯免费用着别人的软件,还搞引流的垃圾网站和公众号.地址如下 http ...
- 我也是一个“翻译家”——关于“robust”
每次看到"鲁棒性",总是不知道是什么意思,一度怀疑自己是不是中国人,是不是说汉语.每次都要查英汉字典,然后一次次看到: robust(adj.精力充沛的; 坚定的; 粗野的,粗鲁的 ...
- RabbitMQ各个端口被占用的进程说明
官方地址:https://www.rabbitmq.com/networking.html#ports 端口 描述 4369 erlang 发现端口,被 epmd 占用,用于 RabbitMQ 节点和 ...
- PVC-U排水管的断管与接管
1. PVC-U管的常用切割工具 2. PVC-U管的胶粘剂 3. 用胶粘剂粘接PVC-U管与管件
- PostgreSQL 语法
进入命令行工具,我们可以使用 \help 来查看各个命令的语法 : postgres-# \help <command_name> 例如,我们查看下 select 语句的语法: postg ...