论文解读(SelfGNN)《Self-supervised Graph Neural Networks without explicit negative sampling》
论文信息
论文标题:Self-supervised Graph Neural Networks without explicit negative sampling
论文作者:Zekarias T. Kefato, Sarunas Girdzijauskas
论文来源:2021, WWW
论文地址:download
论文代码:download
1 介绍
本文核心贡献:
- 使用孪生网络隐式实现对比学习;
- 本文提出四种特征增强方式(FA);
2 相关工作
Graph Neural Networks
GCN 和 GAT 存在的一个问题:GCN 和 GAT 需要全批处理训练,也就是说,整个图($H$)应该被加载到内存中,这使得它们是可转换的,不能扩展到大型网络。
3 方法
3.1 数据增强
拓扑结构:
- 基于随机游走的 $\text{PageRank}$ 算法:
$\boldsymbol{H}^{P P R}=\alpha(\boldsymbol{I}-(1-\alpha) \tilde{A})^{-1} \quad\quad\quad(2)$
$\boldsymbol{H}^{H K}=\exp \left(t A D^{-1}-t\right)\quad\quad\quad(3)$
其中 $\alpha$ 是心灵传输概率 ,$t$ 是扩散时间
- 基于 $\text{Katz}$ 指标的算法:
$\boldsymbol{H}^{k a t z}=(I-\beta \tilde{A})^{-1} \beta \tilde{A}\quad\quad\quad(4)$
Katz-index是一对节点之间所有路径集的加权和,路径根据其长度进行惩罚。衰减系数($\beta$)决定了处罚过程。
特征增强:
- Split:特征 $X$ 拆分成两部分 $\boldsymbol{X}=\boldsymbol{X}[:,: F / 2]$ 和 $\boldsymbol{X}^{\prime}=\boldsymbol{X}[:, F / 2:]$ ,然后分别用于生成两个视图。
- Standardize:特征矩阵进行 z-score standardization :
${\large X^{\prime}=\left(\frac{X^{T}-\bar{x}}{s}\right)^{T}} $
其中 $\bar{x} \in \mathbb{R}^{F \times 1}$ 和 $s \in \mathbb{R}^{F \times 1}$ 是与每个特征相关联的均值向量和标准差向量。
- Local Degree Profile (LDP):提出了一种基于节点局部度轮廓计算出的五个统计量的节点特征构建机制 $\mathbf{X}^{\prime} \in \mathbb{R}^{N \times 5}$ ,然后使用零填充 $X^{\prime} \in \mathbb{R}^{N \times F}$ 使其维度与 $X$ 一致。
- Paste:是一种功能增强技术,它简单地结合了 $X$ 和 LDP 功能,如增强功能 $\boldsymbol{X}^{\prime} \in \mathbb{R}^{N \times(F+5)}$。在这种情况下,在原始特征矩阵 $X$ 上应用了一个零填充,例如 $X \in \mathbb{R}^{N \times(F+5)}$ 。
3.2 框架
总体框架如下:

组成部分:
- 组件一:生成视图,$any(G)$ 是对原始图 $G$ 从拓扑或特征层面进行数据增强;
- 组件二:图自编码器 $f_{\theta}$ 和 $f_{\phi}$,一种堆叠架构,如 Figure 2 (A) 所示。概括为:$X_{1}=f_{\theta}\left(G_{1}\right)$, $X_{2}=f_{\phi}\left(G_{2}\right)$;
- 组件三:孪生网络(Siamese Network,用于评估两个输入样本的相似性)是一个投影头,类似$g_{\theta}$的架构,如 Figure 2 (B) 所示。本文在这发现使用这个投影头对性能没有多大提升,所以实际上并没有使用;
- 组件四:预测块(prediction block),对学生网络(左边)使用,这个预测块可以是 MLP ,也可以是 $g_{\theta}$,架构如Figure 2 (B) 所示。学生网络用于从教师网络(右边)中学到有用的信息;【$g_{\theta}\left(\mathbf{X}_{1}\right) \approx \mathbf{X}_{2}$】

须知:
只对学生网络的参数通过梯度更新(SG),学生网络使用的损失函数如下:
$\mathcal{L}_{\theta}=2-2 \cdot \frac{\left\langle g_{\theta}\left(X_{1}\right), X_{2}\right\rangle}{\left\|g_{\theta}\left(X_{1}\right)\right\|_{F} \cdot\left\|X_{2}\right\|_{F}}\quad\quad\quad(5)$
教师网络参数通过学生网络使用指数移动平均(EMA,exponential moving average)进行更新。指数移动平均如下:
$\phi \leftarrow \tau \phi+(1-\tau) \theta\quad\quad\quad(6)$
这里 $\tau$ 是衰减率。
4 实验
数据集:
- citation networks (Cora, Citeseer, Pubmed)
- author collaboration networks (CS, Physics)
- co-purchased products network (Photo, Computers)

实验设置:
- 70/10/20–train/validation/test
- $\alpha=0.15$, $t=3$, $\beta=0.1$
与原始 GNN 的比较:

对比 ClusterSelfGNN 性能的提升:

与自监督 GNN 的比较:

消融实验:

Split 策略的有效性:

5 结论
本研究提出了一种新的对比自监督方法SelfGNN,它不需要显式的对比项,负样本。虽然负样本对对比学习的成功至关重要,但我们采用了批量归一化,以引入隐式负样本。此外,我们还介绍了四种与拓扑节点特征增强技术一样有效的节点特征增强技术。我们使用7个真实数据集进行了广泛的实验,结果表明SelfGNN获得了与监督GNNs相当的性能,同时明显优于半监督和自监督方法。SelfGNN依赖于两个并行的gnn同时加载到内存中,这给大型网络造成了一个主要的瓶颈。虽然本研究提出了基于聚类的改进,但需要做仔细和有原则的工作来适当地解决这个问题。这是我们未来工作的目标。
相关论文
论文解读(SelfGNN)《Self-supervised Graph Neural Networks without explicit negative sampling》的更多相关文章
- 论文解读二代GCN《Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering》
Paper Information Title:Convolutional Neural Networks on Graphs with Fast Localized Spectral Filteri ...
- Deep Learning 论文解读——Session-based Recommendations with Recurrent Neural Networks
博客地址:http://www.cnblogs.com/daniel-D/p/5602254.html 新浪微博:http://weibo.com/u/2786597434 欢迎多多交流~ Main ...
- 论文解读(DAGNN)《Towards Deeper Graph Neural Networks》
论文信息 论文标题:Towards Deeper Graph Neural Networks论文作者:Meng Liu, Hongyang Gao, Shuiwang Ji论文来源:2020, KDD ...
- 论文解读(KP-GNN)《How Powerful are K-hop Message Passing Graph Neural Networks》
论文信息 论文标题:How Powerful are K-hop Message Passing Graph Neural Networks论文作者:Jiarui Feng, Yixin Chen, ...
- 论文解读(LA-GNN)《Local Augmentation for Graph Neural Networks》
论文信息 论文标题:Local Augmentation for Graph Neural Networks论文作者:Songtao Liu, Hanze Dong, Lanqing Li, Ting ...
- 论文解读(GraphSMOTE)《GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks》
论文信息 论文标题:GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks论文作者:Tianxi ...
- 论文解读(PPNP)《Predict then Propagate: Graph Neural Networks meet Personalized PageRank》
论文信息 论文标题:Predict then Propagate: Graph Neural Networks meet Personalized PageRank论文作者:Johannes Gast ...
- 论文解读(soft-mask GNN)《Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks》
论文信息 论文标题:Soft-mask: Adaptive Substructure Extractions for Graph Neural Networks论文作者:Mingqi Yang, Ya ...
- 论文解读(ChebyGIN)《Understanding Attention and Generalization in Graph Neural Networks》
论文信息 论文标题:Understanding Attention and Generalization in Graph Neural Networks论文作者:Boris Knyazev, Gra ...
随机推荐
- Linux系统常用指令
建立一个文件或文件夹的软链接: ln -s 原名 软链接名 软链接就类似Windows下的"快捷方式",访问它其实访问的是它指向的内容. git仓库操作 1.通常远程操作的第一步, ...
- c# winform 窗体 对话框绑定的值如何填到主窗体问题
这段代码放在主窗体中 private void txt_KeJiaAModel_DoubleClick(object sender, EventArgs e) { TimerEvent(); } // ...
- 3、Lambda表达式
Lambda表达式 Lambda表达式(lambda expression),是一种匿名函数,即没有函数名的函数. Lambda表达式不仅在C#中使用,在Java.Phtyon.C++ 中都有使用. ...
- hashCode()方法的作用?
hashCode()方法与equals()方法相似,都是来自java.lang.Object类的方法,都允许用户定义的子类重写这两个方法. 一般来说,equals这个方法是给用户调用的,如果你想根据自 ...
- 学习MFS(二)
MooseFS,是一个具备冗余容错功能的分布式网络文件系统,它将数据分别存放在多个物理server或单独disk或partition上,确保一份数据有多个备份副本,对于访问MFS的client或use ...
- Python学习--21天Python基础学习之旅(Day01、Day02)
21天的python基础学习,使用<Python从入门到实践>,并且需要手敲书中的code,以下为整个学习过程的记录. Day01: 安装python时要选择复选框 Add Python ...
- Markdown语法2
二 . 低频使用的语法 下面是相对用得少的markdown语法,但也值得学习学习. 10.区块(块引用) 要创建块引用,请在段落前添加一个 > 符号: 块引用支持多段落: 块引用支持嵌套,即引 ...
- weevely使用小结
Weevely 写在前面 由于比赛不确定会不会提供菜刀或者蚁剑,这里我稍微对weevely进行简单介绍一下,具体还是请看官方文档,官方文档讲的很详细(前提你英语嘚不错) 官方文档:https://gi ...
- STM32 中的 assert_param 函数
在学STM32的时候函数assert_param出现的几率非常大,上网搜索一下,网上一般解释断言机制,做为程序开发调试阶段时使用. 断言机制函数assert_param我们在分析库函数的时候,几乎每一 ...
- 前端每日实战:144# 视频演示如何用 D3 和 GSAP 创作一个集体舞动画
效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/gdVObN 可交互视频 此视频是可 ...