因为 \(1 \leq a,b,c,d \leq 100\) 所以每一个颜色都有属于自己的联通块。

考虑 \(a = b=c=d=1\) 的情况。

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD

对于每一个出现次数多于 \(1\) 的颜色,直接隔空插入即可。

BABABABABABABABABABABABABABABABABABABABABABABABABA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
BABABABABABABABABABABABABABABABABABABABABABABABABA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
BABABABABABABABABABABABABABABABABABABABABABABABABA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
BABABABABABABABABABABABABABABABABABABABABABABABAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

显然可插入的个数是大于 \(100\) 的。

#include <bits/stdc++.h>

#define file(a) freopen(a".in", "r", stdin), freopen(a".out", "w", stdout)

#define quad putchar(' ')
#define Enter putchar('\n') int ans[55][55]; struct Node {
int pos, num;
}node[5]; signed main(void) {
for (int i = 0; i < 4; i++) {
std::cin >> node[i].num;
node[i].pos = i;
}
int n = 40, m = 50;
std::cout << n << " " << m << std::endl;
for (int col = 0; col <= 3; col++)
for (int i = 1; i <= 10; i++)
for (int j = 1; j <= m; j++)
ans[col * 10 + i][j] = col;
for (int i = 0; i <= 4; i++)
node[i].num --;
for (int i = 0; i <= 3; i++) {
int front = (i + 3) % 4;
int fx, fy;
fx = front * 10 + 1; fy = 1;
for (int j = 1; j <= node[i].num; j++) {
ans[fx][fy] = i;
// printf ("%d %d\n", fx, fy);
if (fy + 2 <= 50) fy += 2;
else fx += 2, fy = 1;
}
}
for (int i = 1; i <= n; i++, Enter)
for (int j = 1; j <= m; j++)
printf("%c", 'A' + ans[i][j]);
}

CF989C A Mist of Florescence 题解的更多相关文章

  1. 【题解】CF989C A Mist of Florescence

    [题解]CF989C A Mist of Florescence 题目大意: 让你构造一个\(n∗m\)矩阵,这个矩阵由4种字符填充构成,给定4个整数,即矩阵中每种字符构成的四联通块个数,\(n,m\ ...

  2. CF989C A Mist of Florescence (构造)

    CF989C A Mist of Florescence solution: 作为一道构造题,这题确实十分符合构造的一些通性----(我们需要找到一些规律,然后无脑循环).个人认为这题规律很巧妙也很典 ...

  3. CF989C A Mist of Florescence 构造 思维好题 第八题

    A Mist of Florescence time limit per test 1 second memory limit per test 256 megabytes input standar ...

  4. CF989C A Mist of Florescence 构造

    正解:构造 解题报告: 先放传送门yep! 然后构造题我就都直接港正解了QwQ没什么可扯的QwQ 这题的话,首先这么想吼 如果我现在构造的是个4*4的 举个栗子 AABB ACBB AADB DBCA ...

  5. CF989C A Mist of Florescence

    思路: 有趣的构造题. 实现: #include <bits/stdc++.h> using namespace std; ][]; void fillin(int x, int y, c ...

  6. Codeforces Round #487 (Div. 2) C - A Mist of Florescence

    C - A Mist of Florescence 把50*50的矩形拆成4块 #include<bits/stdc++.h> using namespace std; ],b[]; ][ ...

  7. C. A Mist of Florescence ----- Codeforces Round #487 (Div. 2)

    C. A Mist of Florescence time limit per test 1 second memory limit per test 256 megabytes input stan ...

  8. Codeforces Round #487 (Div. 2) A Mist of Florescence (暴力构造)

    C. A Mist of Florescence time limit per test 1 second memory limit per test 256 megabytes input stan ...

  9. Codeforces A Mist of Florescence

    A Mist of Florescence 题目大意: 事先告诉你每种颜色分别有几个联通块,构造一个不超过 \(50*50\) 的矩形.用 \(A,B,C,D\) 四种颜色来对矩形进行涂色使它满足要求 ...

随机推荐

  1. 教你轻松解决CSRF跨站请求伪造攻击

    摘要:CSRF(Cross-site request forgery)跨站请求伪造,通过伪装来自受信任用户的请求来利用受信任的网站.与XSS攻击相比,CSRF攻击往往不大流行(因此对其进行防范的资源也 ...

  2. vue2响应式原理与vue3响应式原理对比

    VUE2.0 核心 对象:通过Object.defineProtytype()对对象的已有属性值的读取和修改进行劫持 数组:通过重写数组更新数组一系列更新元素的方法来实现元素的修改的劫持 Object ...

  3. 让交互更加生动!有意思的鼠标跟随 3D 旋转动效

    今天,群友问了这样一个问题,如下所示的鼠标跟随交互效果,如何实现: 简单分析一下,这个交互效果主要有两个核心: 借助了 CSS 3D 的能力 元素的旋转需要和鼠标的移动相结合 本文,就将讲述如何使用纯 ...

  4. CoreWCF 1.0.0 发布,微软正式支持WCF

    2022年4月28日,我们达到了一个重要的里程碑,并发布了CoreWCF的1.0.0版本.对Matt Connew (微软WCF团队成员)来说,这是5年前即 2017年1月开始的漫长旅程的结束.Mat ...

  5. python数据可视化-matplotlib入门(7)-从网络加载数据及数据可视化的小总结

    除了从文件加载数据,另一个数据源是互联网,互联网每天产生各种不同的数据,可以用各种各样的方式从互联网加载数据. 一.了解 Web API Web 应用编程接口(API)自动请求网站的特定信息,再对这些 ...

  6. 将VScode添加至右键菜单

    首先展示下最终效果: 右击单个文件: 右击文件夹: 操作流程: 1.右击VScode快捷方式查看属性,找到快捷方式对应的目标路径 2.随便找个地方新建个XXX.reg的注册表脚本文件,文件名叫啥都可以 ...

  7. 《手把手教你》系列基础篇(九十七)-java+ selenium自动化测试-框架设计篇-Selenium方法的二次封装和页面基类(详解教程)

    1.简介 上一篇宏哥介绍了如何设计支持不同浏览器测试,宏哥的方法就是通过来切换配置文件设置的浏览器名称的值,来确定启动什么浏览器进行脚本测试.宏哥将这个叫做浏览器引擎类.这个类负责获取浏览器类型和启动 ...

  8. 『现学现忘』Git基础 — 22、Git中文件重命名

    目录 1.用学过的命令进行文件重命名 2.使用git mv命令进行文件重命名 我们这篇文章来说说在Git中如何进行文件重命名. 提示一下,下面所说明的是对已经被Git管理的文件进行重命名,未被Git追 ...

  9. 130_传析阅管理系统accdb64位版本

    博客:www.jiaopengzi.com 焦棚子的文章目录 请点击下载附件 几年前笔者针对家居门店的进销存.人员管理.工资管理.任务系统.门店经营盈亏管理.销售分析.考勤请假等息息相关的业务基于Ac ...

  10. 【Java面试】简述一下你对线程池的理解?

    到底是什么面试题, 让一个工作了4年的精神小伙,只是去参加了一场技术面试, 就被搞得精神萎靡.郁郁寡欢! 这一切的背后到底是道德的沦丧,还是人性的扭曲. 让我们一起揭秘一下这道面试题. 关于, &qu ...