四平方和

四平方和定理,又称为拉格朗日定理:

每个正整数都可以表示为至多 4 个正整数的平方和。

如果把 0 包括进去,就正好可以表示为 4 个数的平方和。

比如:

\(5=0^2+0^2+1^2+2^2\)

\(7=1^2+1^2+1^2+2^2\)

对于一个给定的正整数,可能存在多种平方和的表示法。

要求你对 4 个数排序:

\(0≤a≤b≤c≤d\)

并对所有的可能表示法按 a,b,c,d 为联合主键升序排列,最后输出第一个表示法。

输入格式

输入一个正整数 N。

输出格式

输出4个非负整数,按从小到大排序,中间用空格分开。

数据范围

\(0<N<5∗106\)

输入样例:

5

输出样例

0 0 1 2

思路

  1. 暴力
  2. 二分(见二分模板题

Code

1.暴力(11/12 TLE)

点击查看代码
#include<iostream>
#include<cmath>
using namespace std;
int n; int main(){
cin >> n;
for(int a = 0; a * a <= n; a ++){
for(int b = a; a * a + b * b<= n; b ++){
for(int c = b;a * a + b * b + c * c<= n; c ++){
int t = n - a * a - b * b - c * c;
int d = sqrt(t);
//cout << t << " " << d << endl;
if(d*d == t && d >= c){
printf("%d %d %d %d",a,b,c,d);
return 0;
}
}
}
}
}

2. 二分

点击查看代码
#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#define endl '\n'
using namespace std; const int N = sqrt(5*1e6) + 10;
typedef struct temp{
int c,d,s;
}temp;
int n;
temp t[N * N]; bool cmp(temp a,temp b){
if(a.s != b.s)return a.s < b.s; //二分前的预处理为有序
else if(a.c != b.c)return a.c < b.c;//维护答案要求的顺序
else return a.d < b.d;
}
bool check(int mid,int x){
int c = t[mid].c,d = t[mid].d;
if(c*c + d*d >= x)return 1;
else return 0;
}
int main(){
// ios::sync_with_stdio(false);
// cin.tie(0),cout.tie(0);
cin >> n;
int cnt = 0;
for(int c = 0; c * c <= n; c ++ ){ //预处理
for(int d = c; c * c + d * d <= n; d ++){
t[cnt ++] = {c,d,c * c + d * d};
}
} sort(t,t + cnt,cmp);
//for(int i = 0; i < cnt; i ++)printf("%d %d %d\n",t[i].c,t[i].d,t[i].s);
for(int a = 0; a * a <= n; a ++ ){ //优化为两层for循环+二分
for(int b = a; a * a + b * b <= n; b ++ ){
int x = n - a * a - b * b; //搜索值
int l = 0, r = cnt - 1; //搜索范围
while(l < r){
int mid = l + r >> 1;
if(check(mid,x))r = mid;
else l = mid + 1;
}
int c = t[l].c,d = t[l].d; //注意这里是l或者r而不是mid
if(x == c*c + d*d && b <= c){ //维护答案要求的顺序
printf("%d %d %d %d",a,b,c,d); //按格式输出
return 0;
}
}
}
return 0;
}

四平方和【第七届蓝桥杯省赛C++A/B组,第七届蓝桥杯省赛JAVAB/C组】的更多相关文章

  1. java算法 第七届 蓝桥杯B组(题+答案) 8.四平方和

    8.四平方和  (程序设计) 四平方和定理,又称为拉格朗日定理:每个正整数都可以表示为至多4个正整数的平方和.如果把0包括进去,就正好可以表示为4个数的平方和. 比如:5 = 0^2 + 0^2 + ...

  2. 第七届蓝桥杯javaB组真题解析-四平方和(第八题)

    题目 /* 四平方和 四平方和定理,又称为拉格朗日定理: 每个正整数都可以表示为至多4个正整数的平方和. 如果把0包括进去,就正好可以表示为4个数的平方和. 比如: 5 = 0^2 + 0^2 + 1 ...

  3. java实现第七届蓝桥杯四平方和

    四平方和 四平方和 四平方和定理,又称为拉格朗日定理: 每个正整数都可以表示为至多4个正整数的平方和. 如果把0包括进去,就正好可以表示为4个数的平方和. 比如: 5 = 0^2 + 0^2 + 1^ ...

  4. 蓝桥杯-四平方和-java

    /* (程序头部注释开始) * 程序的版权和版本声明部分 * Copyright (c) 2016, 广州科技贸易职业学院信息工程系学生 * All rights reserved. * 文件名称: ...

  5. 蓝桥杯比赛javaB组练习《四平方和》

    四平方和 四平方和定理,又称为拉格朗日定理:每个正整数都可以表示为至多4个正整数的平方和.如果把0包括进去,就正好可以表示为4个数的平方和. 比如:5 = 0^2 + 0^2 + 1^2 + 2^27 ...

  6. 2016蓝桥杯省赛C/C++A组第八题 四平方和

    题意: 四平方和定理,又称为拉格朗日定理: 每个正整数都可以表示为至多4个正整数的平方和. 如果把0包括进去,就正好可以表示为4个数的平方和. 比如: 5 = 0^2 + 0^2 + 1^2 + 2^ ...

  7. 2014嘉杰信息杯ACM/ICPC湖南程序设计邀请赛暨第六届湘潭市程序设计竞赛

    比赛链接: http://202.197.224.59/OnlineJudge2/index.php/Contest/problems/contest_id/36 题目来源: 2014嘉杰信息杯ACM ...

  8. 7-Java-C(四平方和)

    题目描述: 四平方和定理,又称为拉格朗日定理: 每个正整数都可以表示为至多4个正整数的平方和. 如果把0包括进去,就正好可以表示为4个数的平方和. 比如: 5 = 0^2 + 0^2 + 1^2 + ...

  9. 费马平方和定理&&斐波那契恒等式&&欧拉四平方和恒等式&&拉格朗日四平方和定理

    费马平方和定理 费马平方和定理的表述是:奇素数能表示为两个平方数之和的充分必要条件是该素数被4除余1. 1. 如果两个整数都能表示为两个平方数之和的形式,则他们的积也能表示为两个平方数之和的形式. $ ...

  10. 第七届蓝桥杯省赛javaB组 第七题剪邮票

    剪邮票 如[图1.jpg], 有12张连在一起的12生肖的邮票.现在你要从中剪下5张来,要求必须是连着的.(仅仅连接一个角不算相连)比如,[图2.jpg],[图3.jpg]中,粉红色所示部分就是合格的 ...

随机推荐

  1. http://localhost:8282/user/findsomeuser[object%20Object]

    查看vue中的方法的访问路径是否填写正确. 后端:

  2. 函数柯里化实现sum函数

    需求 实现sum函数,使其可以传入不定长参数,以及不定次数调用 //示例 console.log(sum(1,2)(3)()) //6 console.log(sum(2,3,4,5)(1,2)(3) ...

  3. kubelet忽然不可用

    原因,有可能机器的cpu信息有变化(扩容或者缩容)解决办法: 删掉/opt/var/lib/kubelet目录下(或者/data/lib/kubelet)cpu_manager_state文件 然后m ...

  4. vulnhub靶场之THALES: 1

    准备: 攻击机:虚拟机kali.本机win10. 靶机:THALES: 1,网段地址我这里设置的桥接,所以与本机电脑在同一网段,下载地址:https://download.vulnhub.com/th ...

  5. 【单元测试】Junit 4(三)--Junit4断言

    1.0 前言 ​ 断言(assertion)是一种在程序中的一阶逻辑(如:一个结果为真或假的逻辑判断式),目的为了表示与验证软件开发者预期的结果--当程序执行到断言的位置时,对应的断言应该为真.若断言 ...

  6. Redisson源码解读-分布式锁

    前言 Redisson是一个在Redis的基础上实现的Java驻内存数据网格(In-Memory Data Grid).Redisson有一样功能是可重入的分布式锁.本文来讨论一下这个功能的特点以及源 ...

  7. 【笔记】入门DP(Ⅱ)

    0X00 P1433 吃奶酪 状压 \(DP\),把经过的点压缩成01串.若第 \(i\) 位为 \(0\) 表示未到达,为 \(1\) 则表示已到达. 用 \(f[i][j]\) 表示以 \(i\) ...

  8. 【云原生 · Kubernetes】部署kube-apiserver集群

    个人名片: 因为云计算成为了监控工程师‍ 个人博客:念舒_C.ying CSDN主页️:念舒_C.ying 部署kube-apiserver集群 10.1 创建kube-apiserver 证书 10 ...

  9. Bugku md5 collision

    题目名字都叫md5碰撞,那就肯定和md5碰撞脱不了关系了 打开题目,首先让我们输入a 行吧,随意post一个a=1进去 结果提示flase 这里应该是有特殊值,我们找找看 查看源码,抓包 没找到 试试 ...

  10. redisson分布式锁原理剖析

    redisson分布式锁原理剖析 ​ 相信使用过redis的,或者正在做分布式开发的童鞋都知道redisson组件,它的功能很多,但我们使用最频繁的应该还是它的分布式锁功能,少量的代码,却实现了加锁. ...