Numpy数据存取

•数据的csv文件的存取

  • 只能有效存取和读取一维和二维数据
a = np.arange(100).reshape(5,20)
#用delimiter分割,默认为空格
np.savetxt('a.csv',a,fmt='%d',delimiter=',')
#unpack=True 读入属性将写入不同变量,默认unpack=False
b = np.loadtxt('a.csv',dtype=np.int,delimiter=',',unpack=False)
print(b)
#[[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
# [20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39]
# [40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59]
# [60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79]
# [80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99]]

•多维数据的存取

  • 存取和读取多维数据
#数据写入文件
#sep数据分隔符,默认空格 format写入数据的格式
a.tofile("b.dat",sep=',',format='%d')
#count读入元素个数 -1代表整个文件
b = np.fromfile("b.dat",dtype=float,count=-1,sep=',')
print(b)
#[ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.
# 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35.
# 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. 46. 47. 48. 49. 50. 51. 52. 53.
# 54. 55. 56. 57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 67. 68. 69. 70. 71.
# 72. 73. 74. 75. 76. 77. 78. 79. 80. 81. 82. 83. 84. 85. 86. 87. 88. 89.
# 90. 91. 92. 93. 94. 95. 96. 97. 98. 99.]
  • 只能有效存取和读取一维和二维数据
a = np.arange(100).reshape(5,20)
#以.npy为扩展名
np.save('a.npy',a)
b = np.load('a.npy')
print(b)
#[[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
# [20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39]
# [40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59]
# [60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79]
# [80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99]] #以.npz为扩展名 压缩
np.savez('a.npz',a)
b = np.load('a.npz')
#.npz结尾的数据集是压缩文件
#使用.files 命令进行查看文件内部
print(b.files)
#['arr_0']
print(b['arr_0'])
#[[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19]
# [20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39]
# [40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59]
# [60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79]
# [80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99]]

Numpy库基础___四的更多相关文章

  1. Numpy库基础___五

    Numpy数据存取 •NumPy的随机数函数 a = np.random.rand(1,2,3) print(a) #[[[0.03339719 0.72784732 0.47527802] # [0 ...

  2. Numpy库基础___一

    ndarray一个强大的N维数组对象Array •ndarray的建立(元素默认浮点数) 可以利用list列表建立ndarray import numpy as np list =[0,1,2,3] ...

  3. Numpy库基础___三

    ndarray一个强大的N维数组对象Array •ndarray的操作 索引 a = np.arange(24).reshape((2,3,4)) print(a) #[[[ 0 1 2 3] # [ ...

  4. Numpy库基础___二

    ndarray一个强大的N维数组对象Array •ndarray的变换 x.reshape(shape)重塑数组的shape,要求元素的个数一致,不改变原数组 x = np.ones((2,3,4), ...

  5. Python数据分析Numpy库方法简介(四)

    Numpy的相关概念2 副本和视图 副本:复制 三种情况属于浅copy 赋值运算 切片 视图:链接,操作数组是,返回的不是副本就是视图 c =a.view().创建a的视图/影子和切片一样都是浅cop ...

  6. Numpy库的学习(四)

    我们今天继续学习一下Numpy库 接着前面几次讲的,Numpy中还有一些标准运算 a = np.arange(3) print(a) print(np.exp(a)) print(np.sqrt(a) ...

  7. $python数据分析基础——初识numpy库

    numpy库是python的一个著名的科学计算库,本文是一个quickstart. 引入:计算BMI BMI = 体重(kg)/身高(m)^2 假如有如下几组体重和身高数据,让求每组数据的BMI值: ...

  8. Python基础——numpy库的使用

    1.numpy库简介:    NumPy提供了许多高级的数值编程工具,如:矩阵数据类型.矢量处理,以及精密的运算库.专为进行严格的数字处理而产生. 2.numpy库使用: 注:由于深度学习中存在大量的 ...

  9. 初识NumPy库-基本操作

    ndarray(N-dimensional array)对象是整个numpy库的基础. 它有以下特点: 同质:数组元素的类型和大小相同 定量:数组元素数量是确定的 一.创建简单的数组: np.arra ...

随机推荐

  1. pyrealsense2学习

    如何得到realsense设备信息 前提:将D455连接在电脑上,并且已经下载好 Realsense Viewer 打开Realsense Viewer--> Info, 便可得到相机的一些参数 ...

  2. 2021羊城杯比赛复现(Crypto)

    bigrsa 题目: from Crypto.Util.number import * from flag import * n1 = 10383529640908175186077053551474 ...

  3. HTML基础笔记整理

    「学习笔记」HTML基础 前言 勤做笔记不仅可以让自己学的扎实,更重要的是可以让自己少走弯路.有人说:"再次翻开笔记是什么感觉",我的回答是:"初恋般的感觉". ...

  4. 《PHP程序员面试笔试宝典》——如何回答系统设计题?

    如何巧妙地回答面试官的问题? 本文摘自<PHP程序员面试笔试宝典> 应届生在面试时,偶尔也会遇到一些系统设计题,而这些题目往往只是测试求职者的知识面,或者测试求职者对系统架构方面的了解,一 ...

  5. 编译安装 tree 命令

    文章目录 下载源码包 编译源码包 tree下载地址:http://mama.indstate.edu/users/ice/tree/ Centos发行版,可以直接使用命令 yum -y install ...

  6. 【基础知识】CPU指令周期

    完整执行一条指令所需要的时间 基本概念 指令周期,读取-执行周期(fetch-and-execute cycle)是指CPU要执行指令经过的步骤. 计算机之所以能自动地工作,是因为CPU能从存放程序的 ...

  7. idea Transparent-native-to-ascii 是否需要勾选?

    目录 首先看一下官方对该选项的解释: 第一段是说标准的Java api是用ISO 8859-1编码.properties文件的,所以如果你在properties文件中可以使用转义序列表示没在这个编码中 ...

  8. drawable如何修改图片大小

    这个问题刚开始遇到是导入图片太大,在网上找了许多教程大多都是采用setBounds()方法自己尝试许多次还是没成功,在经历了多达数个小时折磨后我找到两个方法1.在导入图片之前直接对图片进行修改大小.( ...

  9. jprofiler 查看程序内存泄露

    在最近的工作中,通过JProfiler解决了一个内存泄漏的问题,现将检测的步骤和一些分析记录下来,已备今后遇到相似问题时可以作为参考. 运行环境: Tomcat6,jdk6,JProfiler8 内存 ...

  10. Could not load file or assembly 'System.Windows.Forms, Version=6.0.2.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

    项目升级后提示错误 System.IO.FileNotFoundException: Could not load file or assembly 'System.Windows.Forms, Ve ...