POJ3761 Bubble Sort (组合数学,构造)
题面
Bubble sort is a simple sorting algorithm. It works by repeatedly stepping through the list to be sorted, comparing each pair of adjacent items and swapping them if they are in the wrong order. The pass through the list is repeated until no swaps are needed, which indicates that the list is sorted. The algorithm gets its name from the way smaller elements “bubble” to the top of the list. Because it only uses comparisons to operate on elements, it is a comparison sort. ——Wikipedia
Bubble Sort is a very simple sorting algorithm which runs in O(n2) time. Each round, we start from the beginning of the list, compare each adjacent pair of items in turn, swapping the items if necessary. Repeat the pass through the list, until no swaps are done. Assume that after exactly T rounds, the array is already in the ascending order, then we say that T is the number of Bubble Sort Rounds of this array. Below is an example: Let us take an array of numbers “5 1 4 2 8”, then we sort the array using Bubble Sort as follow:
First Round:
( 5 1 4 2 8 ) -> ( 1 5 4 2 8 ), Compares the first two elements, and swaps them.
( 1 5 4 2 8 ) -> ( 1 4 5 2 8 ), Swap since 5 > 4
( 1 4 5 2 8 ) -> ( 1 4 2 5 8 ), Swap since 5 > 2
( 1 4 2 5 8 ) -> ( 1 4 2 5 8 ), since these elements are already in order (8 > 5), algorithm does not swap them.
Second Round:
( 1 4 2 5 8 ) -> ( 1 4 2 5 8 )
( 1 4 2 5 8 ) -> ( 1 2 4 5 8 ), Swap since 4 > 2
( 1 2 4 5 8 ) -> ( 1 2 4 5 8 )
( 1 2 4 5 8 ) -> ( 1 2 4 5 8 )
After T = 2 rounds, the array is already sorted, hence we say that the number of Bubble Sort Rounds of this array is equal to 2.
ZX learns Bubble Sort in an algorithm class and his teacher leaves him a problem as homework. The teacher gives ZX an array A with N distinct numbers which is already sorted in ascending order and he tells ZX that this array is obtained after exactly K rounds of Bubble sort. The problem is: How many initial arrays there may be from which we can obtain the array A after exactly K rounds of Bubble Sort? The result may be very large, so you only need to output the answer mod 20100713.
题解
是一道结论+构造的题。
对于冒泡排序,相信大家都已经很熟悉了。它除了逆序对的性质以外,还有一个性质:每一轮排序,都会使得每个数前面比它大的数个数减少 1,减到 0 不变。
因此,我们可以令
d
i
d_i
di 为数字
i
i
i 前面比它大的数个数,那么有
∀
i
,
0
≤
d
i
≤
n
−
i
\forall i,0\leq d_i\leq n-i
∀i,0≤di≤n−i 。
为了保证
K
K
K 轮后恰好排完,我们得使
max
d
i
=
K
\max d_i=K
maxdi=K 。
所以,合法的
d
d
d 序列就有
K
!
⋅
(
(
K
+
1
)
n
−
k
−
K
n
−
k
)
K!\cdot((K+1)^{n-k}-K^{n-k})
K!⋅((K+1)n−k−Kn−k) 个。
事实是,这个即为答案,因为我们可以通过一个
d
d
d 序列构造出一个唯一的排列:
- 从大到小往排列中放入数字。
- 恒有
d
n
=
0
d_n=0
dn=0 ,先放入数字
n
n
n ,然后
d
n
−
1
∈
{
0
,
1
}
d_{n-1}\in\{0,1\}
dn−1∈{0,1} ,为
0
0
0 就把
n
−
1
n-1
n−1 紧挨着放
n
n
n 的左边,否则放右边,此时暂时得到一个长为 2 的序列,继续……
- 我们放数字
i
i
i 时,将
i
i
i 插入到当前已形成的序列第
d
i
d_i
di 个位置的后面(为 0 则放最开头),使之满足
d
i
d_i
di 的限制。而且,有且仅有这种放法是满足限制的。
最终放完所有数字后,形成一个长度为
n
n
n 的排列,就是一种方案。
综上,答案就是
K
!
⋅
(
(
K
+
1
)
n
−
k
−
K
n
−
k
)
K!\cdot((K+1)^{n-k}-K^{n-k})
K!⋅((K+1)n−k−Kn−k) ,预处理阶乘+快速幂 可以达到
O
(
T
log
n
+
n
)
O(T\log n+n)
O(Tlogn+n) 。
CODE
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 1000005
#define ENDL putchar('\n')
#define LL long long
#define DB double
#define lowbit(x) ((-x) & (x))
LL read() {
LL f = 1,x = 0;char s = getchar();
while(s < '0' || s > '9') {if(s=='-')f = -f;s = getchar();}
while(s >= '0' && s <= '9') {x=x*10+(s-'0');s = getchar();}
return f * x;
}
const int MOD = 20100713;
int n,m,i,j,s,o,k;
int fac[MAXN];
int qkpow(int a,int b) {
int res = 1;
while(b > 0) {
if(b & 1) res = res *1ll* a % MOD;
a = a *1ll* a % MOD; b >>= 1;
}return res;
}
char ss[MAXN];
int main() {
fac[0] = fac[1] = 1;
for(int i = 2;i <= 1000000;i ++) {
fac[i] = fac[i-1]*1ll*i % MOD;
}
int T = read();
while(T --) {
n = read();k = read();
int ans = (qkpow(k+1,n-k)+MOD-qkpow(k,n-k)) % MOD *1ll* fac[k] % MOD;
printf("%d\n",ans);
}
return 0;
}
POJ3761 Bubble Sort (组合数学,构造)的更多相关文章
- POJ3761 Bubble Sort
对1~n组成的序列进行冒泡排序,一共进行了k趟,问有几个符合题意的序列. 注意:这里指每一趟是指交换当前相邻的全部逆序对,比如:2 1 4 3进行一趟交换就是1 2 3 4 假设我们细心观察.就会发现 ...
- POJ 3761:Bubble Sort——组合数学
题目大意:众所周知冒泡排序算法多数情况下不能只扫描一遍就结束排序,而是要扫描好几遍.现在你的任务是求1~N的排列中,需要扫描K遍才能排好序的数列的个数模20100713.注意,不同于真正的冒泡排序算法 ...
- Java中的经典算法之冒泡排序(Bubble Sort)
Java中的经典算法之冒泡排序(Bubble Sort) 神话丿小王子的博客主页 原理:比较两个相邻的元素,将值大的元素交换至右端. 思路:依次比较相邻的两个数,将小数放在前面,大数放在后面.即在第一 ...
- Bubble Sort (5775)
Bubble Sort Problem Description P is a permutation of the integers from 1 to N(index starting from ...
- Bubble Sort [ASM-MIPS]
# Program: Bubble sort # Language: MIPS Assembly (32-bit) # Arguments: 5 unordered numbers stored in ...
- HDU 5775 Bubble Sort(冒泡排序)
p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...
- 2016 Multi-University Training Contest 4 Bubble Sort(树状数组模板)
Bubble Sort 题意: 给你一个1~n的排列,问冒泡排序过程中,数字i(1<=i<=n)所到达的最左位置与最右位置的差值的绝对值是多少 题解: 数字i多能到达的最左位置为min(s ...
- 快速幂取模 POJ 3761 bubble sort
题目传送门 /* 题意:求冒泡排序扫描k次能排好序的全排列个数 数学:这里有一个反序列表的概念,bj表示在j左边,但大于j的个数.不多说了,我也是看网上的解题报告. 详细解释:http://blog. ...
- 冒泡排序(Bubble Sort)
常见的排序算法有Bubble Sort.Merge Sort.Quick Sort 等,所有排序算的基本法思想都是把一个无限大的数据规模通过算法一步步缩小,指导最后完成排序. 这里分享一下Buuble ...
随机推荐
- Python装饰器,Python闭包
可参考:https://www.cnblogs.com/lianyingteng/p/7743876.html suqare(5)等价于power(2)(5):cube(5)等价于power(3)(5 ...
- Python装饰器Decorators
def hi(name="yasoob"): return "hi " + name print(hi()) # 我们甚至可以将一个函数赋值给一个变量,比如 g ...
- .NET中测试代码运行时间
更新记录 本文迁移自Panda666原博客,原发布时间:2021年6月29日. 计算代码运行的时间,除了呆萌地用秒表去计时,或者可以通过Visual Studio来查看,还可以在.NET代码中使用St ...
- 【Redis】skiplist跳跃表
有序集合Sorted Set zadd zadd用于向集合中添加元素并且可以设置分值,比如添加三门编程语言,分值分别为1.2.3: 127.0.0.1:6379> zadd language 1 ...
- 手把手教你实现一个图片压缩工具(Vue与Node的完美配合)
前言 图片压缩对于我们日常生活来讲,是非常实用的一项功能.有时我们会在在线图片压缩网站上进行压缩,有时会在电脑下软件进行压缩.那么我们能不能用前端的知识来自己实现一个图片压缩工具呢?答案是有的.效果展 ...
- (数据科学学习手札139)geopandas 0.11版本重要新特性一览
本文示例代码已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 大家好我是费老师,就在几天前,geopandas ...
- 零基础学Python:元组(Tuple)详细教程
Python的元组与列表类似,不同之处在于元组的元素不能修改,元组使用小括号,列表使用方括号,元组创建很简单,只需要在括号中添加元素,并使用逗号隔开即可https://jq.qq.com/?_wv=1 ...
- SLSA 框架与软件供应链安全防护
随着软件供应链攻击浪潮愈演愈烈,Google 发布了一系列指南来确保软件包的完整性,旨在防止影响软件供应链的未经授权的代码修改.新的 Google SLSA 框架(Supply-chain Level ...
- 洛谷P2709 小B的询问 莫队做法
题干 这个是用来学莫队的例题,洛谷详解 需要注意的一点,一定要分块!不然会慢很多(直接TLE) 其中分块只在排序的时候要用,并且是给问题右端点分块 再就是注意add与del函数里的操作,增加数量不提, ...
- CH341驱动安装
CH341驱动安装 参考文章:https://blog.csdn.net/qq_33194301/article/details/104510078 方法一: 下载驱动包,按提示编译,会出现下面报错 ...