qbxt五一数学Day1
I. 基础知识
1. 带余除法(小学)
1. 定义
对于整数 \(a,b\),若有 \(q,r\) 满足:
\]
其中 \(0\le r<b\),那么 \(r\) 称作 \(a\) 模 \(b\) 的 余数,记作 \(a\bmod b\) .
顺便一提,\(a=\left\lfloor\dfrac ab\right\rfloor\) .
2. 性质
\[(a+b)\bmod p=((a\bmod p)+(b\bmod p))\bmod p
\]\[(a-b)\bmod p=((a\bmod p)-(b\bmod p))\bmod p
\]\[ab\bmod p=((a\bmod p)(b\bmod p))\bmod p
\]Proof:
设 \(a=a'p+r_0,b=b'p+r_1\),则有:
\[(a+b)\bmod p=(r_0+r_1)\bmod p=((a\bmod p)+(b\bmod p))\bmod p
\]\[(a-b)\bmod p=(r_0-r_1)\bmod p=((a\bmod p)-(b\bmod p))\bmod p
\]\[ab\bmod p=(r_0\cdot r_1)\bmod p=((a\bmod p)(b\bmod p))\bmod p\tag*{□}
\]
2. 最大公约数(gcd)/ 最小公倍数(lcm)
1. 定义
最大公约数:\(\max G\;s.t.\;p\bmod G=q\bmod G=0\),则 \(G\) 为 \(p,q\) 最大公约数,记做 \(\gcd(p,q)=(p,q)=G\)
最小公倍数:\(\min L\;s.t.\;L\bmod p=L\bmod q=0\),则 \(L\) 为 \(p,q\) 最小公倍数,记做 \(\operatorname{lcm}(p,q)=[p,q]=L\)
2. 性质
\(\gcd(a,b)=\gcd(b,a\bmod b)\)
3. 高精度
II. 矩阵及其应用
1. 定义
\(n\) 行 \(m\) 列的数表就是 矩阵(Martix),矩阵里的数叫做矩阵的 元素(Element),例如下面就是三个矩阵:
\]
矩阵一般用大写字母 \(A,B,C,\cdots\) 表示
特殊的矩阵有:
- 零矩阵 \(O\),所有元素都是 \(0\) 的矩阵 .
- 单位矩阵 \(I\)(或写作 \(E\)),对角线是 \(1\),其余为 \(0\) 的矩阵:\(\begin{bmatrix}1&0&0&\cdots&0\\0&1&0&\cdots&0\\0&0&1&\cdots&0\\\vdots&\vdots&\vdots&\ddots&\vdots\\0&0&0&\cdots&1\end{bmatrix}\) .
2. 运算
相等:所有元素相等
相加减:所有元素相加减
数乘:用数乘每个元素
相乘
\]
\]
3. 递推
Fibonacci 数列:\([F_n,F_{n-1}]\begin{bmatrix}1&1\\1&0\end{bmatrix}=[F_{n+1},F_n]\)
更改系数类似
\(F_n=F_{n-1}+F_{n-3}\) 形:开 \(F_n,F_{n-1},F_{n-2}\)
有常数项:例子:\(F_n=F_{n-1}+F_{n-2}+1\),递推:\([F_n,F_{n-1},1]\begin{bmatrix}1&1&0\\1&0&0\\1&0&1\end{bmatrix}=[F_{n+1},F_n,1]\)
求和:
- 推式子再做矩阵快速幂
- 通用办法:例子:求 Fibonacci 数列和,递推:\([F_n,F_{n-1},S_n]\begin{bmatrix}1&1&0\\1&0&1\\0&0&1\end{bmatrix}=[F_{n+1},F_n,S_{n+1}]\),\(S_n\) 是和 .
4. 图论
https://www.cnblogs.com/CDOI-24374/p/14407416.html
Problem 杰杰的女性朋友
对于每个点 \(u\) 给定属性 \(in_{u,1},in_{u,2},\cdots,in_{u,k}\),\(out_{u,1},out_{u,2},\cdots,out_{u,k}\)
对于任意 \((u,v)\),\(u\) 到 \(v\) 有 \(\sum\limits_{i=1}^k ou_{u,i}in_{v,i}\) 条道路
问 \(u\) 到 \(v\) 不超过 \(d\) 条道路的方案数 .
\]
qbxt五一数学Day1的更多相关文章
- qbxt五一数学Day3
目录 1. 组合数取模 1. \(n,m\le 200\),\(p\) 任意 2. \(n,m\le 10^6\),\(p\ge 10^9\) 素数 3. \(n,m\le 10^6\),\(p\le ...
- qbxt五一数学Day2
目录 1. 判断素数(素性测试) 1. \(O(\sqrt n)\) 试除 2. Miller-Rabin 素性测试 * 欧拉函数 2. 逆元 3. exgcd(扩展欧几里得) 4. 离散对数(BSG ...
- 五一培训 DAY1
DAY1 枚举 例题1 题解: 例题2 题解: 例题3 题解: vis[ ]判断是否为素数,pri[ ]储存素数 例题4 题解: 例题5 题解: PS: i < 1<<n ...
- 【qbxt五一】day2
简单数据结构 入门题: 在初学OI的时候,总会遇到这么一道题. 给出N次操作,每次加入一个数,或者询问当前所有数的最大值. 维护一个最大值Max,每次加入和最大值进行比较. 时间复杂度O(N). 给出 ...
- qbxt 考前集训 Day1
立方数(cubic) Time Limit:1000ms Memory Limit:128MB 题目描述 LYK定义了一个数叫“立方数”,若一个数可以被写作是一个正整数的3次方,则这个数就是立方数 ...
- Python小白的数学建模课-A3.12 个新冠疫情数模竞赛赛题与点评
新冠疫情深刻和全面地影响着社会和生活,已经成为数学建模竞赛的背景帝. 本文收集了与新冠疫情相关的的数学建模竞赛赛题,供大家参考,欢迎收藏关注. 『Python小白的数学建模课 @ Youcans』带你 ...
- NOIP2017 国庆郑州集训知识梳理汇总
第一天 基础算法&&数学 day1难度测试 如果要用一个词来形容上午的测试,那真是体无完肤. 成绩: 题目 成绩 评价 T1 50 一般 T2 10 大失所望 T3 0 差 基础算法 ...
- qbxt数学五一Day4
目录 1. 随机试验 2. 概率 1. 平凡 2. 条件概率 3. 期望 习题 1 2 3 4 1. 随机试验 定义: 不能预先确知结果 试验之前可以预测所有可能结果或范围 可以在相同条件下重复实验 ...
- 五一DAY1数论学习笔记
by ruanxingzhi 整除性 如果a能把b除尽,也就是没有余数,则我们称a整除b,亦称b被a整除.(不是除以,是整除!!) 记作:\(a|b\) |这个竖杠就是整除符号 整除的性质 自反性 对 ...
随机推荐
- Web安全学习笔记 SQL注入中
Web安全学习笔记 SQL注入中 繁枝插云欣 --ICML8 权限提升 数据库检测 绕过技巧 一.权限提升 1. UDF提权 UDF User Defined Function,用户自定义函数 是My ...
- 我被冻在了 vue2 源码工具函数第一行Object.freeze()(一)
前言 最近参加若川的源码共度活动,第 24 期 vue2 源码工具函数,最开始: var emptyObject = Object.freeze({}); 之前知道 Object.freeze() 是 ...
- 2020级cpp机考模拟题A卷-#题解2
这部分的题目都有一定难度,有兴趣的同学可以钻研一下. 特此感谢来自BDT20030 tql的支持. 2:素数的和-2 题意: 计算不大于m的素数之和.(多么容易理解的题目啊,对吧) 题解(有点复杂的 ...
- KMP算法(改进的模式匹配算法)——next函数
KMP算法简介 KMP算法是在基础的模式匹配算法的基础上进行改进得到的算法,改进之处在于:每当匹配过程中出现相比较的字符不相等时,不需要回退主串的字符位置指针,而是利用已经得到的部分匹配结果将模式串向 ...
- Vue基础之 动态组件
为什么会有动态组件> vue 通过组件机制 实现的页面功能的模块化处理,通常情况下 我们在vue中使用组件 就是先定义组件 然后再需要的地方 插入组件即可 但是在某些情况下 需要根据不同的需求 ...
- 【JNPF修改通告】fastjson≤1.2.80反序列化漏洞
近日Fastjson Develop Team 发现 fastjson 1.2.80及以下存在新的风险,存在反序列化漏洞.攻击者可绕过默认autoType关闭限制,攻击远程服务器,风险影响较大,请大家 ...
- SmartIDE v0.1.18 已经发布 - 助力阿里国产IDE OpenSumi 插件安装提速10倍、Dapr和Jupyter支持、CLI k8s支持
SmartIDE v0.1.18 (cli build 3538) 已经发布,在过去的Sprint 18中,我们集中精力推进对 k8s 远程工作区 的支持,同时继续扩展SmartIDE对不同技术栈的支 ...
- Win10 pycharm中显示PyTorch tensorboard图
import numpy import numpy as np import torch import matplotlib.pyplot as plt import torch.nn as nn i ...
- 2021.05.05【NOIP提高B组】模拟 总结
T1 给你一棵树,要求增加最少的边权是的从根到每一个叶子的长度相等 不能改变原有的最大长度 这是一个贪心:尽可能往深度小的边增加 先预处理出 \(mx_i\) 表示从 \(i\) 到叶子的最大长度 然 ...
- 线程安全性-原子性之Atomic包
先了解什么是线程安全性:当多个线程访问某个类时,不管运行时环境采用何种调度方式或者这些进程将如何交替执行,并且在主调代码中不需要任何额外的同步或协同,这个类都能表现出正确的行为,那么就称为这个类是线程 ...