Understanding AMQP, the protocol used by RabbitMQ--reference
RabbitMQ is a lightweight, reliable, scalable and portable message broker. But unlike many message brokers familiar to Java developers, it's not based on JMS. Instead, your applications communicate with it via a platform-neutral, wire-level protocol: the Advanced Message Queuing Protocol (AMQP). Fortunately there's already a Java client library and SpringSource is working on first class Spring and Grails integration - so don't worry about having to do low-level stuff to use RabbitMQ. You can even find AMQP client libraries that expose a JMS interface. But AMQP is sufficiently different in operation from JMS that it might cause headaches for Java developers that are used to the JMS model.
In order to ease the transition, I'll be looking in this post at the basic concepts that underpin AMQP along with three common usage scenarios. By the end, you will hopefully have a good enough understanding to configure RabbitMQ and use it via the APIs provided by Spring and Grails.
Exchanges, queues, and bindings
Like any messaging system, AMQP is a message protocol that deals with publishers and consumers. The publishers produce the messages, the consumers pick them up and process them. It's the job of the message broker (such as RabbitMQ) to ensure that the messages from a publisher go to the right consumers. In order to do that, the broker uses two key components: exchanges and queues. The following diagram shows how they connect a publisher to a consumer:
As you can see, the setup is pretty straightforward. A publisher sends messages to a named exchange and a consumer pulls messages from a queue (or the queue pushes them to the consumer depending on the configuration). Of course, the connections have to be made in the first place, so how do publishers and consumers discover each other? Via the name of the exchange. Usually, either the publisher or consumer creates the exchange with a given name and then makes that name public. How that publication happens depends on the circumstances, but one might put it in public API documentation or send it to known clients.
How are the messages routed from the exchange to the queue? Good question. First, the queue has to be attached to the given exchange. Typically, a consumer creates a queue and attaches it to an exchange at the same time. Second, messages received by the exchange have to be matched to the queue - a process called "binding".
To understand binding, it's useful to understand the structure of an AMQP message:
The headers and properties of the message are basically key/value pairs. The difference between them is that headers are defined by the AMQP specification whereas properties can contain arbitrary, application-specific information. The actual message content is just a sequence of bytes, so if you want to pass text around in your messages, then you should standardise on an encoding. UTF-8 is a good bet. You can specify a content type and encoding in the message headers if you want, but that's apparently not particularly common.
What does this have to do with binding? One of the standard headers is called routing-key and it is this that the broker uses to match messages to queues. Each queue specifies a "binding key" and if that key matches the value of the routing-key header, the queue receives the message.
Things are slightly complicated by the concept of exchange types. The AMQP spec. defines the following four types:
| EXCHANGE TYPE | BEHAVIOUR |
|---|---|
| Direct | The binding key must match the routing key exactly - no wildcard support. |
| Topic | Same as Direct, but wildcards are allowed in the binding key. '#' matches zero or more dot-delimited words and '*' matches exactly one such word. |
| Fanout | The routing and binding keys are ignored - all published messages go to all bound queues. |
| Headers |
Update I corrected the information on wildcards, which work on the basis of dot-delimited words or terms.
For example, say a publisher sends a message with a routing key of "NYSE" to a topic exchange called "Stocks". If a consumer creates a queue attached to "Stocks" with a binding key of "#", "*", or "NYSE", then that consumer will get the message because all three binding keys match "NYSE". However, if the message is published to a direct exchange, then the consumer will not get the message if the binding key is "#" or "*" since those characters are treated as literals, not wildcards. Interestingly, "#.#" will also match "NYSE" despite the routing key not having a dot.
Now consider a message with a routing key of "NYSE.TECH.MSFT". What binding keys will match it given that the message is going to a topic exchange?
| BINDING KEY | MATCH? |
|---|---|
| NYSE.TECH.MSFT | Yes |
| # | Yes |
| NYSE.# | Yes |
| *.* | No |
| NYSE.* | No |
| NYSE.TECH.* | Yes |
| NYSE.*.MSFT | Yes |
That's really all there is to it. Flexibility is provided by support for multiple consumers per queue and multiple queues per exchange. In fact, a single queue can even be bound to multiple exchanges. Now let's look at some of those scenarios.
RPC
An AMQP broker can act as an RPC mechanism between a client and a service. The general setup is like this, using a direct exchange:
The general sequence goes:
- Client sends message to the queue, specifying: (a) a routing key that matches the service; and (b) the name of a queue to pick the response up from.
- Exchange passes the message to the service's queue ("ops_q" in this case).
- The queue pushes the message to the service, which then does some work and sends a response message back to the exchange, specifying a routing_key that matches the reply queue.
- The client picks the response message off the reply queue.
From the perspective of the client, the call could either be blocking or non-blocking. How easy it is to do one or the other, though, depends on the client library in use.
The key to the RPC scenario is making sure that the client and service are using the same exchange for the initial request and that the client knows what to specify for the routing key.
As for the reply queue, it's typically created by the client, which then populates the reply_toheader appropriately. Also, although you can use a different exchange for the replies compared to the requests, it's much more common to use the same exchange for both requests and replies.
Pub(lish)/Sub(scribe)
JMS has the concept of topic queues that ensure that messages from a publisher go to all subscribers. You can easily achieve the same behaviour in AMQP by binding multiple queues to an exchange like so:
Even better, the queues can filter which messages they receive via the binding key. If a consumer wants to receive all messages, then it can specify a binding key of "#" - the "match any number of words" wildcard. Rather confusingly for your average developer, "*" matches zero or one (dot-delimited) words as mentioned earlier.
Work distribution
Imagine you have an application that has a bunch of jobs that need executing. With AMQP, you can hook up multiple consumers such that each job goes to one, and only one, of those consumers. The publisher doesn't care which consumer does the work, just that the work is done. This is work distribution.
Configuring it is pretty straightforward, as shown in this diagram:
So you have one queue bound to the exchange with multiple consumers sharing that queue. This setup guarantees that only one consumer processes a given message, no matter how many consumers there are.
Those are the three main usage patterns for AMQP brokers. Although I have described each individually, it's fairly common to combine them. For example, you could have multiple services sharing the same queue (work distribution) in the RPC pattern. It's really up to you to decide how to configure the exchanges and queues, and now you should have a good enough understanding to work out the appropriate setup for your situation.
If you want to go further into AMQP, then check out the specification itself, particularly the section on General Architecture. And to get started with RabbitMQ, just go to its website.
reference from:
http://spring.io/blog/2010/06/14/understanding-amqp-the-protocol-used-by-rabbitmq/
Understanding AMQP, the protocol used by RabbitMQ--reference的更多相关文章
- Serial Communication Protocol Design Hints And Reference
前面转载的几篇文章详细介绍了UART.RS-232和RS-485的相关内容,可以知道,串口通信的双方在硬件层面需要约定如波特率.数据位.校验位和停止位等属性,才可以正常收发数据.实际项目中使用串口通信 ...
- Spring Boot Reference Guide
Spring Boot Reference Guide Authors Phillip Webb, Dave Syer, Josh Long, Stéphane Nicoll, Rob Winch, ...
- What is AMQP? and the architecture
What is AMQP? (Advanced Message Queuing Protocol) When two applications need to communicate there ar ...
- AMQP 0-9-1 Model Explained Why does the queue memory grow and shrink when publishing/consuming? AMQP和AMQP Protocol的是整体和部分的关系 RabbitMQ speaks multiple protocols.
AMQP 0-9-1 Model Explained — RabbitMQ http://next.rabbitmq.com/tutorials/amqp-concepts.html AMQP 0-9 ...
- AMQP 0.9.1和1.0协议差别以及rabbitmq支持情况
RabbitMQ implements AMQP 1.0 via a plugin. However, AMQP 1.0 is a completely different protocol than ...
- 深入剖析 RabbitMQ —— Spring 框架下实现 AMQP 高级消息队列协议
前言 消息队列在现今数据量超大,并发量超高的系统中是十分常用的.本文将会对现时最常用到的几款消息队列框架 ActiveMQ.RabbitMQ.Kafka 进行分析对比.详细介绍 RabbitMQ 在 ...
- 二、RabbitMQ简介及AMQP协议
RabbitMQ简介 RabbitMQ是开源的消息代理和队列服务器,是由Erlang语言开发的,基于AMQP协议(Advanced Message Queuing Protocol高级消息队列协议)的 ...
- PHP 下基于 php-amqp 扩展的 RabbitMQ 简单用例 (一) -- 安装 AMQP 扩展和 Direct Exchange 模式
Windows 安装 amqp 扩展 RabbitMQ 是基于 amqp(高级消息队列协议) 协议的.使用 RabbitMQ 前必须为 PHP 安装相应的 amqp 扩展. 下载相应版本的 amqp ...
- RabbitMQ 的消息持久化与 Spring AMQP 的实现剖析
文章目录 1. 原生的实现方式 2. Spring AMQP 的实现方式 要从奔溃的 RabbitMQ 中恢复的消息,我们需要做消息持久化.如果消息要从 RabbitMQ 奔溃中恢复,那么必须满足 ...
随机推荐
- IOS改变状态栏样式
1.状态栏高亮颜色 在info.plist中添加 View controller-based status bar appearance 设置为 "NO"在AppDelegate. ...
- css margin collapse
css中存在margin collapse,即边界塌陷或边界重叠. http://www.w3cplus.com/css/understanding-bfc-and-margin-collapse.h ...
- CMake交叉编译配置
很多时候,我们在开发的时候是面对嵌入式平台,因此由于资源的限制需要用到相关的交叉编译.即在你host宿主机上要生成target目标机的程序.里面牵扯到相关头文件的切换和编译器的选择以及环境变量的改变等 ...
- mysql hash索引优化
创建表 CREATE TABLE `t1` ( `id` int(11) NOT NULL AUTO_INCREMENT, `msg` varchar(20) NOT NULL DEFAULT ' ...
- 30 个 php 操作 redis 常用方法代码例子
这篇文章主要介绍了 30 个 php 操作 redis 常用方法代码例子 , 本文其实不止 30 个方法 , 可以操作 string 类型. list 类型和 set 类型的数据 , 需要的朋友可以参 ...
- tomcat正常启动,但IP不能访问web。ping IP地址,一直超时。 用ipconfig命令修复TCP/IP的配置信息
今天遇到一个好奇葩的问题 好吧是昨天遇到的一直没找到解决办法(`へ´) tomcat正常启动,但是通过IP不能访问web 用IP地址就是不行 (:′⌒`) 打不开 localhost就可以 ...
- 分布式配置管理平台 - Disconf介绍
原博客地址:http://blog.csdn.net/zhu_tianwei/article/details/47984545 Disconf专注于各种分布式系统配置管理的通用组件/通用平台,提供统一 ...
- cf C. Counting Kangaroos is Fun
http://codeforces.com/contest/373/problem/C 贪心,先排序,然后从n/2位置倒着找每一个可不可以放到别的袋鼠内. #include <cstdio> ...
- 理解java中的ThreadLocal(转)
一.对ThreadLocal概述 JDK API 写道: 该类提供了线程局部 (thread-local) 变量.这些变量不同于它们的普通对应物,因为访问某个变量(通过其 get 或 set 方法)的 ...
- sql server 2005中使用with实现递归
WITH fw_requestion_note_temp(old_apply_id) AS ( --取根节点放入临时表 SELECT old_apply_id FROM fw_requestion_n ...