一、定义

Anti-Nim 游戏:

取走最后一个石子的玩家输

Multi-Nim游戏:

每次取完后可以将一堆石子分为多堆,不能存在空堆

Multi-Anti-Nim游戏:

每次取完后可以将一堆石子分为多堆,不能存在空堆,取走最后一个石子的玩家输

二、Anti-Nim游戏结论及其证明

若局面满足以下两个条件中的1个,则先手必胜;否则,先手必败

1、局面的SG不为0,且至少存在一个子局面的SG>1

2、局面的SG为0,不存在子局面的SG>1

情况1:局面的SG!=0,至少存在一个子局面的SG>1

根据Nim取石子游戏的证明可知

一定存在一种方案,使后手面临局面SG=0

(将SG最大的子局面的SG变成局面SG^自己的SG即可)

先手选择让后手面临SG=0

(1)只有一个子局面的SG>1,那么先手可以选择将这一个子局面的SG变成0或者1,

后手面临局面有偶数个SG=1的子局面

局面SG=0,不存在一个子局面的SG>1,这是一个必败局面

所以先手必胜

(2)有两个或以上的子局面的SG>1,先手至多可以使一个子局面的SG<=1,

后手面临局面SG=0,存在子局面的SG>1,这是必败局面

所以先手必胜

情况2:局面的SG!=0,不存在子局面的SG>1

这种情况是奇数个SG=1的局面

那么只能转移到偶数个SG=1的局面

后手面临局面的SG为0,不存在子局面的SG>1,这是一个必胜局面

所以先手必败

情况3:局面的SG=0,不存在子局面的SG>1

这种情况是偶数个SG=1的局面

只能转移到奇数个SG=1的局面

后手面临局面的SG不为0,不存在子局面的SG>1,这是一个必败局面

所以先手必胜

情况4:局面的SG=0,存在子局面的SG>1

这种情况下,至少有两个子局面的SG>1

只能转移到局面的SG!=0,存在子局面的SG>1

后手面临必胜局面

所以先手必败

三、Multi-Anti-Nim游戏结论不变证明

结论:

同Anti-Nim游戏

证明:

只考虑先手必败局面

情况2:

因为不能分出SG=0的子局面,所以这种情况下无法局面无法再分

情况4:

即证明 子局面分裂之后的异或和 仍然不为0

同Anti-Nim游戏证明,详请参见http://www.cnblogs.com/TheRoadToTheGold/p/8618228.html

Multi-Anti-Nim游戏结论及证明的更多相关文章

  1. 关于NIM博弈结论的证明

    关于NIM博弈结论的证明 NIM博弈:有k(k>=1)堆数量不一定的物品(石子或豆粒…)两人轮流取,每次只能从一堆中取若干数量(小于等于这堆物品的数量)的物品,判定胜负的条件就是,最后一次取得人 ...

  2. Multi-Nim游戏结论不变证明

    Nim取石子游戏结论: 若n堆石子的异或和为0,则先手必胜:否则,先手必败 加入新规则: 每次取完石子后,可以将取的那一堆的石子 分为多堆,也可以不分 结论: 同Nim取石子游戏结论 证明: 如果异或 ...

  3. $NIM$游戏小总结

    $umm$可能之后会写个博弈论总结然后就直接把这个复制粘贴上去就把这个删了 但因为还没学完所以先随便写个$NIM$游戏总结趴$QAQ$ 首先最基础的$NIM$游戏:有$n$堆石子,每次可以从一堆中取若 ...

  4. 编程之美----NIM游戏

    : 博弈游戏·Nim游戏 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 今天我们要认识一对新朋友,Alice与Bob.Alice与Bob总是在进行各种各样的比试,今天他 ...

  5. [hihoCoder] 博弈游戏·Nim游戏

    时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 今天我们要认识一对新朋友,Alice与Bob.Alice与Bob总是在进行各种各样的比试,今天他们在玩一个取石子的游戏.在 ...

  6. (转载)Nim游戏博弈(收集完全版)

    Nim游戏的概述: 还记得这个游戏吗?给出n列珍珠,两人轮流取珍珠,每次在某一列中取至少1颗珍珠,但不能在两列中取.最后拿光珍珠的人输.后来,在一份资料上看到,这种游戏称为“拈(Nim)”.据说,它源 ...

  7. Nim游戏(组合游戏Combinatorial Games)

    http://baike.baidu.com/view/1101962.htm?fr=aladdin Nim游戏是博弈论中最经典的模型(之一),它又有着十分简单的规则和无比优美的结论 Nim游戏是组合 ...

  8. hihocoder 1163 博弈游戏·Nim游戏

    1163 : 博弈游戏·Nim游戏 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 今天我们要认识一对新朋友,Alice与Bob. Alice与Bob总是在进行各种各样的 ...

  9. Nim游戏博弈

    Nim游戏的概述: 还记得这个游戏吗? 给出n列珍珠,两人轮流取珍珠,每次在某一列中取至少1颗珍珠,但不能在两列中取.最后拿光珍珠的人输. 后来,在一份资料上看到,这种游戏称为"拈(Nim) ...

随机推荐

  1. Spring源码阅读学习一

    昨天抽时间阅读Spring源码,先从spring 4.x的core包开始吧,除了core和util里,首当其冲的就是asm和cglib. 要实现两个类实例之间的字段的复制功能: 多年之前用C#,因为阅 ...

  2. mysql数据库优化大全

    转载:https://blog.csdn.net/weixin_38112233/article/details/79054661 数据库优化 sql语句优化 索引优化 加缓存 读写分离 分区 分布式 ...

  3. PSP(4.27——5.3)以及周记录

    1.PSP 4.27 11:40 18:10 125 265 Cordova A Y min 4.28 10:00 16:50 200 210 Cordova A Y min 4.29 15:30 2 ...

  4. Lodop如何设置预览后导出带背景的图,打印不带背景图

    Lodop中的ADD_PRINT_SETUP_BKIMG,可以加载上背景图,该背景图在预览的时候可以显示也可以不显示,打印可以打印出来也可以不打印出来.一般套打,都是不打印背景图的,比如一些快递的快递 ...

  5. python中字典和json的区别

    python中,json和dict非常类似,都是key-value的形式,而且json.dict也可以非常方便的通过dumps.loads互转 定义 python中,json和dict非常类似,都是k ...

  6. BZOJ3524[Poi2014]Couriers——主席树

    题目描述 给一个长度为n的序列a.1≤a[i]≤n.m组询问,每次询问一个区间[l,r],是否存在一个数在[l,r]中出现的次数大于(r-l+1)/2.如果存在,输出这个数,否则输出0. 输入 第一行 ...

  7. CSS覆盖公共样式中的某个属性

    CSS如何覆盖公共样式中的某个属性?利用CSS样式的优先级. 如下例子: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transition ...

  8. 09 Zabbix Item类型之Zabbix SNMP类型

    点击返回:自学Zabbix之路 点击返回:自学Zabbix4.0之路 点击返回:自学zabbix集锦 Zabbix Item类型之Zabbix SNMP类型 SNMP是监控服务器以外设备的非常好的方式 ...

  9. SQLITE在IIS中使用问题

    在WEB中使用这个数据库时,System.Data.SQLite.dll 这个经常会出问题 主要是版本问题,sqlite.DLL的版本要和Framework版本匹配 这是下载地址 http://www ...

  10. 软Raid5制作

    以raid5为例: 1.添加4块磁盘要求:容量.转速.接口一样的硬盘. 2.创建分区并修改ID[root@localhost ~]# fdisk /dev/sdb[root@localhost ~]# ...