Multi-Anti-Nim游戏结论及证明
一、定义
Anti-Nim 游戏:
取走最后一个石子的玩家输
Multi-Nim游戏:
每次取完后可以将一堆石子分为多堆,不能存在空堆
Multi-Anti-Nim游戏:
每次取完后可以将一堆石子分为多堆,不能存在空堆,取走最后一个石子的玩家输
二、Anti-Nim游戏结论及其证明
若局面满足以下两个条件中的1个,则先手必胜;否则,先手必败
1、局面的SG不为0,且至少存在一个子局面的SG>1
2、局面的SG为0,不存在子局面的SG>1
情况1:局面的SG!=0,至少存在一个子局面的SG>1
根据Nim取石子游戏的证明可知
一定存在一种方案,使后手面临局面SG=0
(将SG最大的子局面的SG变成局面SG^自己的SG即可)
先手选择让后手面临SG=0
(1)只有一个子局面的SG>1,那么先手可以选择将这一个子局面的SG变成0或者1,
后手面临局面有偶数个SG=1的子局面
局面SG=0,不存在一个子局面的SG>1,这是一个必败局面
所以先手必胜
(2)有两个或以上的子局面的SG>1,先手至多可以使一个子局面的SG<=1,
后手面临局面SG=0,存在子局面的SG>1,这是必败局面
所以先手必胜
情况2:局面的SG!=0,不存在子局面的SG>1
这种情况是奇数个SG=1的局面
那么只能转移到偶数个SG=1的局面
后手面临局面的SG为0,不存在子局面的SG>1,这是一个必胜局面
所以先手必败
情况3:局面的SG=0,不存在子局面的SG>1
这种情况是偶数个SG=1的局面
只能转移到奇数个SG=1的局面
后手面临局面的SG不为0,不存在子局面的SG>1,这是一个必败局面
所以先手必胜
情况4:局面的SG=0,存在子局面的SG>1
这种情况下,至少有两个子局面的SG>1
只能转移到局面的SG!=0,存在子局面的SG>1
后手面临必胜局面
所以先手必败
三、Multi-Anti-Nim游戏结论不变证明
结论:
同Anti-Nim游戏
证明:
只考虑先手必败局面
情况2:
因为不能分出SG=0的子局面,所以这种情况下无法局面无法再分
情况4:
即证明 子局面分裂之后的异或和 仍然不为0
同Anti-Nim游戏证明,详请参见http://www.cnblogs.com/TheRoadToTheGold/p/8618228.html
Multi-Anti-Nim游戏结论及证明的更多相关文章
- 关于NIM博弈结论的证明
关于NIM博弈结论的证明 NIM博弈:有k(k>=1)堆数量不一定的物品(石子或豆粒…)两人轮流取,每次只能从一堆中取若干数量(小于等于这堆物品的数量)的物品,判定胜负的条件就是,最后一次取得人 ...
- Multi-Nim游戏结论不变证明
Nim取石子游戏结论: 若n堆石子的异或和为0,则先手必胜:否则,先手必败 加入新规则: 每次取完石子后,可以将取的那一堆的石子 分为多堆,也可以不分 结论: 同Nim取石子游戏结论 证明: 如果异或 ...
- $NIM$游戏小总结
$umm$可能之后会写个博弈论总结然后就直接把这个复制粘贴上去就把这个删了 但因为还没学完所以先随便写个$NIM$游戏总结趴$QAQ$ 首先最基础的$NIM$游戏:有$n$堆石子,每次可以从一堆中取若 ...
- 编程之美----NIM游戏
: 博弈游戏·Nim游戏 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 今天我们要认识一对新朋友,Alice与Bob.Alice与Bob总是在进行各种各样的比试,今天他 ...
- [hihoCoder] 博弈游戏·Nim游戏
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 今天我们要认识一对新朋友,Alice与Bob.Alice与Bob总是在进行各种各样的比试,今天他们在玩一个取石子的游戏.在 ...
- (转载)Nim游戏博弈(收集完全版)
Nim游戏的概述: 还记得这个游戏吗?给出n列珍珠,两人轮流取珍珠,每次在某一列中取至少1颗珍珠,但不能在两列中取.最后拿光珍珠的人输.后来,在一份资料上看到,这种游戏称为“拈(Nim)”.据说,它源 ...
- Nim游戏(组合游戏Combinatorial Games)
http://baike.baidu.com/view/1101962.htm?fr=aladdin Nim游戏是博弈论中最经典的模型(之一),它又有着十分简单的规则和无比优美的结论 Nim游戏是组合 ...
- hihocoder 1163 博弈游戏·Nim游戏
1163 : 博弈游戏·Nim游戏 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 今天我们要认识一对新朋友,Alice与Bob. Alice与Bob总是在进行各种各样的 ...
- Nim游戏博弈
Nim游戏的概述: 还记得这个游戏吗? 给出n列珍珠,两人轮流取珍珠,每次在某一列中取至少1颗珍珠,但不能在两列中取.最后拿光珍珠的人输. 后来,在一份资料上看到,这种游戏称为"拈(Nim) ...
随机推荐
- Web接口测试-HttpClient
要实现Web接口测试的自动化有许多方式,比如利用Jmeter.Loadrunner等测试工具都能够实现接口的自动化测试,我们也可以利用一些开源的框架来实现接口的自动化测试,比如我们现在要说的这个Htt ...
- Laravel route ---- resoure
Laravel 路由--资源路由 Route::resource('blog', 'BlogController'); 上面代码将等同于: Route::get('/blog', 'BlogContr ...
- WebService概述
一.WebService介绍 什么是WebService? 一言以蔽之:WebService是一种跨编程语言和跨操作系统平台的远程调用技术. 所谓跨编程语言和跨操作平台,就是说服务端程序采用java编 ...
- aliyun centos14.04 trusty 上安装docker1.12.1
现在apt这边拿到的docker最新版本就是1.12.1 其实本来这次不准备记录了,本以为一帆风顺的安装最后还是遇到了一点坑,aliyun的锅,卡成狗无法下载.青岛机房 1.更新源,然后安装ca-ce ...
- Python 零基础 快速入门 趣味教程 (咪博士 海龟绘图 turtle) 4. 函数
什么样的程序员才是优秀的程序员?咪博士认为“慵懒”的程序员才是真正优秀的程序员.听起来不合逻辑?真正优秀的程序员知道如何高效地工作,而不是用不止境的加班来完成工作任务.函数便是程序员高效工作的利器之一 ...
- 下载 Internet Explorer 11(脱机安装程序)
https://support.microsoft.com/zh-cn/help/18520/download-internet-explorer-11-offline-installer 语言 本 ...
- jQuery 簡介
jQuery:是一個js庫,可以極大地簡化編程,“寫得少做得多”. jquery的作用: 挑選元素.操作屬性.事件函數.動畫和效果.ajax: jQuery庫:google和microsoft都支持, ...
- codeforces622B
The Time CodeForces - 622B 给你当前的时间(24小时制):HH:MM.输出 x 分钟后的时间是多少?(24小时制) 不明白可以看看例子哦- Input 第一行给出了当前时间, ...
- BZOJ3110[Zjoi2013]K大数查询——权值线段树套线段树
题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数是 ...
- BZOJ2008 JSOI2010连通数(floyd+bitset)
一直不明白为什么要用floyd求传递闭包,直接搜不是更快嘛……不过其实可以用bitset优化,方法也比较显然.bitset是真的神奇啊,好多01状态且转移相似的东西都可以用这个优化一下. #inclu ...