题意:给定了每个正面朝上的硬币的位置,然后每次可以翻1,2,3枚硬币,并且最右边的硬币开始必须是正面朝上的。

分析:

约束条件6:每次可以翻动一个、二个或三个硬币。(Mock Turtles游戏)

初始编号从0开始。

当N==1时,硬币为:正,先手必胜,所以sg[0]=1.

当N==2时,硬币为:反正,先手必赢,先手操作后可能为:反反或正反,方案数为2,所以sg[1]=2。

当N==3时,硬币为:反反正,先手必赢,先手操作后可能为:反反反、反正反、正反正、正正反,方案数为4,所以sg[2]=4。

位置x:0  1  2  3  4   5    6   7    8     9  10  11  12  13  14...

sg[x]:  1  2  4  7  8  11 13 14  16  19  21  22  25  26  28…

看上去sg值为2x或者2x+1。我们称一个非负整数为odious,当且仅当该数的二进制形式的1出现的次数是奇数,否则称作evil。所以1,2,4,7是odious因为它们的二进制形式是1,10,100,111.而0,3,5,6是evil,因为它们的二进制形式是0,11,101,110。而上面那个表中,貌似sg值都是odious数。所以当2x为odious时,sg值是2x,当2x是evil时,sg值是2x+1.

这样怎么证明呢?我们会发现发现,

evil^evil=odious^odious=evil

evil^odious=odious^evil=odious

假设刚才的假说是成立的,我们想证明下一个sg值为下一个odious数。注意到我们总能够在第x位置翻转硬币到达sg为0的情况;通过翻转第x位置的硬币和两个其它硬币,我们可以移动到所有较小的evil数,因为每个非零的evil数都可以由两个odious数异或得到;但是我们不能移动到下一个odious数,因为任何两个odious数的异或都是evil数。

假设在一个Mock Turtles游戏中的首正硬币位置x1,x2,…,xn是个P局面,即sg[x1]^…^sg[xn]=0.那么无可置疑的是n必定是偶数,因为奇数个odious数的异或是odious数,不可能等于0。而由上面可知sg[x]是2x或者2x+1,sg[x]又是偶数个,那么x1^x2^…^xn=0。相反,如果x1^x2^…^xn=0且n是偶数,那么sg[x1]^…^sg[xn]=0。这个如果不太理解的话,我们可以先这么看下。2x在二进制当中相当于把x全部左移一位,然后补零,比如说2的二进制是10,那么4的二进制就是100。而2x+1在二进制当中相当于把x全部左移一位,然后补1,比如说2的二进制是10,5的二进制是101。现在看下sg[x1]^…^sg[xn]=0,因为sg[x]是2x或者2x+1,所以式子中的2x+1必须是偶数个(因为2x的最后一位都是0,2x+1的最后一位都是1,要最后异或为0,2x+1必须出现偶数次)。实际上的情况可能是这样的:

MT游戏当中的P局面是拥有偶数堆石子的Nim游戏的P局面。

这是翻硬币游戏里面种的一种,有了上面的理论之后这道题也就容易了!不过这道题要注意的地方就是去除重复位置!!

代码实现:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; int n, a[]; int main()
{
int flag, i, len, num, x;
while(scanf("%d",&n)!=EOF)
{
flag=;
if(n==)
{
printf("Yes\n");
continue;
}
for(i=; i<n; i++)
scanf("%d",&a[i]);
sort(a,a+n);
len=;
a[len++]=a[];
for(i=;i<n;i++)
if(a[i]!=a[len-])
a[len++]=a[i]; for(i=; i<len; i++)
{
num=;
x=a[i]*;
while(a[i])
{
if(a[i]&)
num++;
a[i]=a[i]>>;
}
if(num%==)
x++;
flag=flag^x;
} if(flag)
printf("No\n");
else
printf("Yes\n");
}
return ;
}

hdu 3537(博弈,翻硬币)的更多相关文章

  1. HDU 3537 (博弈 翻硬币) Daizhenyang's Coin

    可以参考Thomas S. Ferguson的<Game Theory>,网上的博客大多也是根据这个翻译过来的,第五章讲了很多关于翻硬币的博弈. 这种博弈属于Mock Turtles,它的 ...

  2. HDU 3537 基础翻硬币模型 Mock Turtles 向NIM转化

    翻硬币游戏,任意选3个,最右边的一个必须是正面.不能操作者败. 基本模型..不太可能自己推 还是老实记下来吧..对于单个硬币的SG值为2x或2x+1,当该硬币的位置x,其二进制1的个数为偶数时,sg= ...

  3. hdu 3537 Daizhenyang's Coin(博弈-翻硬币游戏)

    题意:每次可以翻动一个.二个或三个硬币.(Mock Turtles游戏) 初始编号从0开始. 当N==1时,硬币为:正,先手必胜,所以sg[0]=1. 当N==2时,硬币为:反正,先手必赢,先手操作后 ...

  4. HDU 3537 Daizhenyang's Coin 翻硬币博弈

    题意: 给你n个硬币,你可以从中拿出来1.2.3个硬币,它们不一定要连续,你只需要保证拿出来的硬币中那个下标最大的硬币一定要是正面朝上,最后谁不能操作,谁就输了 题解: 翻硬币游戏 结论: 局面的SG ...

  5. hdu 3537 翻硬币 每次能翻1个 或2个 或3个

    N 枚硬币排成一排,有的正面朝上,有的反面朝上.我们从左开始对硬币按1 到N 编号. 第一,游戏者根据某些约束翻硬币,但他所翻动的硬币中,最右边那个硬币的必须是从正面翻到反面. 第二,谁不能翻谁输. ...

  6. HDU 3537 Mock Turtles型翻硬币游戏

    题目大意: 每次可以翻1个或者2个或者3个硬币,但要保证最右边的那个硬币是正面的,直到不能操作为输,这题目还有说因为主人公感情混乱可能描述不清会有重复的硬币说出,所以要去重 这是一个Mock Turt ...

  7. 【hdu 3537】Daizhenyang's Coin

    Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submission(s) ...

  8. bzoj 3517: 翻硬币

    3517: 翻硬币 Time Limit: 1 Sec  Memory Limit: 128 MB Description 有一个n行n列的棋盘,每个格子上都有一个硬币,且n为偶数.每个硬币要么是正面 ...

  9. 51nod 1613翻硬币

    题目链接:51nod 1613 翻硬币 知乎上的理论解法http://www.zhihu.com/question/26570175/answer/33312310 本题精髓在于奇偶性讨论. 若 n ...

随机推荐

  1. 一些时间的概念与区分(UTC、GMT、LT、TAI等)

    UT - 世界时 Universal Time世界时是最早的时间标准.在1884年,国际上将1s确定为全年内每日平均长度的1/8.64×104.以此标准形成的时间系统,称为世界时,即 UT1.1972 ...

  2. JLink 软件复位、Halt及运行小工具

    调试硬件时常常需要复位目标芯片,每次断电上电太麻烦,又不喜欢总打开segger的命令行,于是就搞了这个小工具:   QT绿色软件,解压即可运行,打开JLinkRST.exe,点击Connect即可通过 ...

  3. c++继承中的内存布局

    今天在网上看到了一篇写得非常好的文章,是有关c++类继承内存布局的.看了之后获益良多,现在转在我自己的博客里面,作为以后复习之用. ——谈VC++对象模型(美)简.格雷程化    译 译者前言 一个C ...

  4. WordPress主题制作教程4:调用指定页面内容

    假设页面page_id=86 $page_id = 86; echo "标题:".get_post($page_id)->post_title; echo "内容: ...

  5. LightOj 1245 --- Harmonic Number (II)找规律

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1245 题意就是求 n/i (1<=i<=n) 的取整的和这就是到找规律的题 ...

  6. Bridging signals---hdu1950(最长上升子序列复杂度n*log(n) )

     题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1950 一直只知道有除n*n的算法之外的求LIS,但是没学过,也没见过,今天终于学了一下,dp[i]表 ...

  7. 几百万的数据,mysql快速高效创建索引

    有一个问题,一张表有3百万条记录,随着时间的增加,记录量会更多,此时查询速度很慢.在创建此表前没有未相应字段添加索引,所以此时需要为表添加索引.但是因为数据量大的原因,索引添加不成功,想了很多办法,终 ...

  8. SQL Server ->> Msg 7411, Level 16, State 1, Line 1 -- Server 'XXXX' is not configured for RPC.

    关于问题,有两个相关的服务器选项. exec sp_serveroption @server='CIA-SH-SVR-SIS', @optname='rpc', @optvalue='true' ex ...

  9. Android与OpenCV——重新下载安装和OpenCV匹配的Android开发环境

    Android与OpenCV——重新下载安装和OpenCV匹配的Android开发环境 !!OpenCV4Android开发之旅(一)----OpenCV2.4简介及 app通过Java接口调用Ope ...

  10. 函数lock_rec_add_to_queue

    在原来的type_mode基础上,加上LOCK_REC /*********************************************************************// ...