Check the difficulty of problems
Check the difficulty of problems
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 5830 Accepted: 2542
Description
Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms:
1. All of the teams solve at least one problem.
2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.
Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem.
Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?
Input
The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines, the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.
Output
For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.
Sample Input
2 2 2
0.9 0.9
1 0.9
0 0 0
Sample Output
0.972
概率DP.
题意:有t支队伍,m道题,冠军最少做n道题,问保证每队最少做一题,冠军最少做n题的概率
思路:下面转载别人博客中的解释,很详细,基本上看着这个思路,将之代码化就能过,注意精度。
可以知道,每个人自己是互不影响的 对于一个选手 i 前 j 道题,做出 k 道题的概率F[i][j][k] = F[i][j - 1][k - 1] * p[i][j] + F[i][j - 1][k] * (1 - p[i][j])
那么问题可以转化为:所有至少做出一道的概率(p1) - 所有选手做出的题数n >= 1 && n < N 的概率(p2)
设s[i][j]表示F[i][M][0] + F[i][M][1] + … + F[i][M][j]
P1 = (s[1][M] - s[1][0])(s[2][M]-s[2][0])…*(s[T][M]-s[T][0])
P2 = (s[1][N-1] - s[1][0])(s[2][N-1]-s[2][0])…*(s[T][N-1]-s[T][0])
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <algorithm>
using namespace std;
typedef long long LL;
const int MAX = 1100;
double Dp[MAX][35][35];
double a[MAX][35];
double s[MAX][35];
int main()
{
int n,m,T;
while(scanf("%d %d %d",&m,&T,&n)&&(n+m+T))
{
for(int i=1;i<=T;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%lf",&a[i][j]);//第i队作对第j道题的概率
}
}
memset(Dp,0,sizeof(Dp));
memset(s,0,sizeof(s));
for(int i=1;i<=T;i++)
{
Dp[i][0][0]=1.0;
for(int j=1;j<=T;j++)
{
Dp[i][j][0]=Dp[i][j-1][0]*(1-a[i][j]);//第i队前j道题一道题都没有做对
}
for(int j=1;j<=m;j++)
{
for(int k=1;k<=j;k++)
{
Dp[i][j][k]=Dp[i][j-1][k-1]*a[i][j]+Dp[i][j-1][k]*(1-a[i][j]);//第i队前j道题做对k道题的概率
}
}
s[i][0]=Dp[i][m][0];//一道题都没有做对的概率
for(int j=1;j<=m;j++)
{
s[i][j]=s[i][j-1]+Dp[i][m][j];//做对1~j道题的概率
}
}
double pp=1.0;//都做对1~m道题的概率
double ppp=1.0;//都做对1~n-1道题的概率
for(int i=1;i<=T;i++)
{
pp*=(s[i][m]-s[i][0]);
ppp*=(s[i][n-1]-s[i][0]);
}
printf("%.3f\n",pp-ppp);//都至少做一道题,并且至少一个对做对的题数大于n
}
return 0;
}
Check the difficulty of problems的更多相关文章
- POJ 2151 Check the difficulty of problems
以前做过的题目了....补集+DP Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K ...
- Check the difficulty of problems(POJ 2151)
Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 5457 ...
- POJ 2151 Check the difficulty of problems (动态规划-可能DP)
Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4522 ...
- POJ 2151 Check the difficulty of problems 概率dp+01背包
题目链接: http://poj.org/problem?id=2151 Check the difficulty of problems Time Limit: 2000MSMemory Limit ...
- 【POJ】2151:Check the difficulty of problems【概率DP】
Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8903 ...
- [ACM] POJ 2151 Check the difficulty of problems (概率+DP)
Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4748 ...
- Check the difficulty of problems - poj 2151 (概率+DP)
有 T(1<T<=1000) 支队伍和 M(0<M<=30) 个题目,已知每支队伍 i 解决每道题目 j 的的概率 p[i][j],现在问:每支队伍至少解决一道题,且解题最多的 ...
- 【poj2151】 Check the difficulty of problems
http://poj.org/problem?id=2151 (题目链接) 题意 T支队伍,一共M道题,第i支队伍解出第j道题的概率为p[i][j].问每支队伍至少解出1道题并且解题最多的的队伍至少解 ...
- [POJ2151]Check the difficulty of problems (概率dp)
题目链接:http://poj.org/problem?id=2151 题目大意:有M个题目,T支队伍,第i个队伍做出第j个题目的概率为Pij,问每个队伍都至少做出1个题并且至少有一个队伍做出N题的概 ...
随机推荐
- 【转】轻量级分布式 RPC 框架
第一步:编写服务接口 第二步:编写服务接口的实现类 第三步:配置服务端 第四步:启动服务器并发布服务 第五步:实现服务注册 第六步:实现 RPC 服务器 第七步:配置客户端 第八步:实现服务发现 第九 ...
- PAT 解题报告 1010. Radix (25)
1010. Radix (25) Given a pair of positive integers, for example, 6 and 110, can this equation 6 = 11 ...
- mysql的binlog安全删除
理论上,应该在配置文件/etc/my.cnf中加上binlog过期时间的配置项,expire_logs_days = 10 但是如果没有加这一项,随着产生越来越多的binlog,磁盘被吃掉了不少.可以 ...
- 实验十五_安装新的int 9中断例程
安装一个新的int 9中断例程,功能:在DOS下,按下“A”键后,除非不在松开, 如果松开,就显示满屏幕的“A”:其他的键照常处理. 提示:按下一个键时产生的扫描码称为通码,松开一个键产生的扫描 ...
- 源码安装zabbix
源码安装zabbix 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 欢迎加入:高级运维工程师之路 598432640 前言:参考网上多篇源码安装的连接,自己把安装过程丢在这 ...
- extjs 4.2 日期控件 选择时分秒功能
因为不支持时分秒,然后在网上也找了一段时间的插件,但是感觉起来都不大方便,最后找一个插件,只需要引用js文件,然后修改类型,就可以实现extjs下面的datafield带时分秒功能了. 步骤: 只需要 ...
- fread与fwrite的自我理解
size_t fread(void* buff,size_t size,size_t count,FILE* stream) 参数1:读取到该buff所指向的内存空间中 参数2:每次读取的字节数,单 ...
- start.s 解析(一)
可以参考 : http://blog.csdn.net/bluesummerg/article/details/5940452 (强大的反汇编) http://www.cnblogs.com/yanh ...
- At_speed_test
Logic BIST通过将很多的tester functionality放在CUT中,减少了test costs,但是更重要的一方面是at-speed testing. At-speed test包括 ...
- yii2获取登陆的用户名
yii2获取登陆的用户名: yii::$app->user->identity->username; 判断用户名是否登陆 if(Yii::$app->user->isGu ...