Check the difficulty of problems
Check the difficulty of problems
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 5830 Accepted: 2542
Description
Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms:
1. All of the teams solve at least one problem.
2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.
Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem.
Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?
Input
The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines, the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.
Output
For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.
Sample Input
2 2 2
0.9 0.9
1 0.9
0 0 0
Sample Output
0.972
概率DP.
题意:有t支队伍,m道题,冠军最少做n道题,问保证每队最少做一题,冠军最少做n题的概率
思路:下面转载别人博客中的解释,很详细,基本上看着这个思路,将之代码化就能过,注意精度。
可以知道,每个人自己是互不影响的 对于一个选手 i 前 j 道题,做出 k 道题的概率F[i][j][k] = F[i][j - 1][k - 1] * p[i][j] + F[i][j - 1][k] * (1 - p[i][j])
那么问题可以转化为:所有至少做出一道的概率(p1) - 所有选手做出的题数n >= 1 && n < N 的概率(p2)
设s[i][j]表示F[i][M][0] + F[i][M][1] + … + F[i][M][j]
P1 = (s[1][M] - s[1][0])(s[2][M]-s[2][0])…*(s[T][M]-s[T][0])
P2 = (s[1][N-1] - s[1][0])(s[2][N-1]-s[2][0])…*(s[T][N-1]-s[T][0])
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <algorithm>
using namespace std;
typedef long long LL;
const int MAX = 1100;
double Dp[MAX][35][35];
double a[MAX][35];
double s[MAX][35];
int main()
{
int n,m,T;
while(scanf("%d %d %d",&m,&T,&n)&&(n+m+T))
{
for(int i=1;i<=T;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%lf",&a[i][j]);//第i队作对第j道题的概率
}
}
memset(Dp,0,sizeof(Dp));
memset(s,0,sizeof(s));
for(int i=1;i<=T;i++)
{
Dp[i][0][0]=1.0;
for(int j=1;j<=T;j++)
{
Dp[i][j][0]=Dp[i][j-1][0]*(1-a[i][j]);//第i队前j道题一道题都没有做对
}
for(int j=1;j<=m;j++)
{
for(int k=1;k<=j;k++)
{
Dp[i][j][k]=Dp[i][j-1][k-1]*a[i][j]+Dp[i][j-1][k]*(1-a[i][j]);//第i队前j道题做对k道题的概率
}
}
s[i][0]=Dp[i][m][0];//一道题都没有做对的概率
for(int j=1;j<=m;j++)
{
s[i][j]=s[i][j-1]+Dp[i][m][j];//做对1~j道题的概率
}
}
double pp=1.0;//都做对1~m道题的概率
double ppp=1.0;//都做对1~n-1道题的概率
for(int i=1;i<=T;i++)
{
pp*=(s[i][m]-s[i][0]);
ppp*=(s[i][n-1]-s[i][0]);
}
printf("%.3f\n",pp-ppp);//都至少做一道题,并且至少一个对做对的题数大于n
}
return 0;
}
Check the difficulty of problems的更多相关文章
- POJ 2151 Check the difficulty of problems
以前做过的题目了....补集+DP Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K ...
- Check the difficulty of problems(POJ 2151)
Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 5457 ...
- POJ 2151 Check the difficulty of problems (动态规划-可能DP)
Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4522 ...
- POJ 2151 Check the difficulty of problems 概率dp+01背包
题目链接: http://poj.org/problem?id=2151 Check the difficulty of problems Time Limit: 2000MSMemory Limit ...
- 【POJ】2151:Check the difficulty of problems【概率DP】
Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8903 ...
- [ACM] POJ 2151 Check the difficulty of problems (概率+DP)
Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4748 ...
- Check the difficulty of problems - poj 2151 (概率+DP)
有 T(1<T<=1000) 支队伍和 M(0<M<=30) 个题目,已知每支队伍 i 解决每道题目 j 的的概率 p[i][j],现在问:每支队伍至少解决一道题,且解题最多的 ...
- 【poj2151】 Check the difficulty of problems
http://poj.org/problem?id=2151 (题目链接) 题意 T支队伍,一共M道题,第i支队伍解出第j道题的概率为p[i][j].问每支队伍至少解出1道题并且解题最多的的队伍至少解 ...
- [POJ2151]Check the difficulty of problems (概率dp)
题目链接:http://poj.org/problem?id=2151 题目大意:有M个题目,T支队伍,第i个队伍做出第j个题目的概率为Pij,问每个队伍都至少做出1个题并且至少有一个队伍做出N题的概 ...
随机推荐
- Java基础之写文件——将多个字符串写入到文件中(WriteProverbs)
控制台程序,将一系列有用的格言写入到文件中. 本例使用通道把不同长度的字符串写入到文件中,为了方便从文件中恢复字符串,将每个字符串的长度写入到文件中紧靠字符串本身前面的位置,这可以告知在读取字符串之前 ...
- Custom IFormatProvider
The following example shows how to write a custom IFormatProvider which you can use in methodString. ...
- [原创]java WEB学习笔记73:Struts2 学习之路-- strut2中防止表单重复提交
本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱 ...
- bzoj3437 小P的牧场
斜率优化dp 代码 #include<cstdio> #include<algorithm> using namespace std; typedef long long ll ...
- Android -- 自定义View小Demo,关于Path类的使用(一)
1,在我们知道自定义view中onDraw()方法是用于绘制图形的,而Path类则是其中的一个重要的类,如下图效果: 代码也没有什么难度,直接贴出来吧 @Override protected void ...
- paper 30 :libsvm的参数说明
English: libsvm_options: -s svm_type : set type of SVM (default 0) 0 -- C-SVC 1 -- nu-SVC 2 -- one-c ...
- rails控制台进入
数据库控制台: rails db .help查看可使用的命令 rails控制台 rails c 普通ruby控制台: irb
- eclipse的自动提示功能
一般情况下按ALT+/即可提示,若想按任意字母都有提示,则可以打开eclipse的自动提示功能,打开或关闭该提示功能的步骤如下: 打开eclipse后一次点Window->Perferences ...
- 【cruch bang】中切换成左手鼠标
在“右键”菜单->settings->Edit autostart启动的geany编辑器中,最后加内容: xmodmap -e 'pointer = 3 2 1'
- android SDK安装容易出错的原因
1.实际上,安卓SDK安装之后,拷贝到其他的机子上面.配置一下环境变量,就可以跑起来的 2.但是拷贝到其他的机子上面临着一个问题就是Eclipse已经配置了的android环境,需要在新的机子上面修改 ...