Check the difficulty of problems

Time Limit: 2000MS Memory Limit: 65536K

Total Submissions: 5830 Accepted: 2542

Description

Organizing a programming contest is not an easy job. To avoid making the problems too difficult, the organizer usually expect the contest result satisfy the following two terms:

1. All of the teams solve at least one problem.

2. The champion (One of those teams that solve the most problems) solves at least a certain number of problems.

Now the organizer has studied out the contest problems, and through the result of preliminary contest, the organizer can estimate the probability that a certain team can successfully solve a certain problem.

Given the number of contest problems M, the number of teams T, and the number of problems N that the organizer expect the champion solve at least. We also assume that team i solves problem j with the probability Pij (1 <= i <= T, 1<= j <= M). Well, can you calculate the probability that all of the teams solve at least one problem, and at the same time the champion team solves at least N problems?

Input

The input consists of several test cases. The first line of each test case contains three integers M (0 < M <= 30), T (1 < T <= 1000) and N (0 < N <= M). Each of the following T lines contains M floating-point numbers in the range of [0,1]. In these T lines, the j-th number in the i-th line is just Pij. A test case of M = T = N = 0 indicates the end of input, and should not be processed.

Output

For each test case, please output the answer in a separate line. The result should be rounded to three digits after the decimal point.

Sample Input

2 2 2

0.9 0.9

1 0.9

0 0 0

Sample Output

0.972

概率DP.

题意:有t支队伍,m道题,冠军最少做n道题,问保证每队最少做一题,冠军最少做n题的概率

思路:下面转载别人博客中的解释,很详细,基本上看着这个思路,将之代码化就能过,注意精度。

可以知道,每个人自己是互不影响的 对于一个选手 i 前 j 道题,做出 k 道题的概率F[i][j][k] = F[i][j - 1][k - 1] * p[i][j] + F[i][j - 1][k] * (1 - p[i][j])

那么问题可以转化为:所有至少做出一道的概率(p1) - 所有选手做出的题数n >= 1 && n < N 的概率(p2)

设s[i][j]表示F[i][M][0] + F[i][M][1] + … + F[i][M][j]

P1 = (s[1][M] - s[1][0])(s[2][M]-s[2][0])…*(s[T][M]-s[T][0])

P2 = (s[1][N-1] - s[1][0])(s[2][N-1]-s[2][0])…*(s[T][N-1]-s[T][0])

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <queue>
#include <algorithm> using namespace std; typedef long long LL; const int MAX = 1100; double Dp[MAX][35][35]; double a[MAX][35]; double s[MAX][35]; int main()
{
int n,m,T;
while(scanf("%d %d %d",&m,&T,&n)&&(n+m+T))
{
for(int i=1;i<=T;i++)
{
for(int j=1;j<=m;j++)
{
scanf("%lf",&a[i][j]);//第i队作对第j道题的概率
}
}
memset(Dp,0,sizeof(Dp));
memset(s,0,sizeof(s));
for(int i=1;i<=T;i++)
{
Dp[i][0][0]=1.0;
for(int j=1;j<=T;j++)
{
Dp[i][j][0]=Dp[i][j-1][0]*(1-a[i][j]);//第i队前j道题一道题都没有做对
}
for(int j=1;j<=m;j++)
{
for(int k=1;k<=j;k++)
{
Dp[i][j][k]=Dp[i][j-1][k-1]*a[i][j]+Dp[i][j-1][k]*(1-a[i][j]);//第i队前j道题做对k道题的概率
}
}
s[i][0]=Dp[i][m][0];//一道题都没有做对的概率
for(int j=1;j<=m;j++)
{
s[i][j]=s[i][j-1]+Dp[i][m][j];//做对1~j道题的概率
}
}
double pp=1.0;//都做对1~m道题的概率
double ppp=1.0;//都做对1~n-1道题的概率
for(int i=1;i<=T;i++)
{
pp*=(s[i][m]-s[i][0]);
ppp*=(s[i][n-1]-s[i][0]);
}
printf("%.3f\n",pp-ppp);//都至少做一道题,并且至少一个对做对的题数大于n
} return 0;
}

Check the difficulty of problems的更多相关文章

  1. POJ 2151 Check the difficulty of problems

    以前做过的题目了....补集+DP        Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K ...

  2. Check the difficulty of problems(POJ 2151)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 5457   ...

  3. POJ 2151 Check the difficulty of problems (动态规划-可能DP)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4522   ...

  4. POJ 2151 Check the difficulty of problems 概率dp+01背包

    题目链接: http://poj.org/problem?id=2151 Check the difficulty of problems Time Limit: 2000MSMemory Limit ...

  5. 【POJ】2151:Check the difficulty of problems【概率DP】

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8903   ...

  6. [ACM] POJ 2151 Check the difficulty of problems (概率+DP)

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4748   ...

  7. Check the difficulty of problems - poj 2151 (概率+DP)

    有 T(1<T<=1000) 支队伍和 M(0<M<=30) 个题目,已知每支队伍 i 解决每道题目 j 的的概率 p[i][j],现在问:每支队伍至少解决一道题,且解题最多的 ...

  8. 【poj2151】 Check the difficulty of problems

    http://poj.org/problem?id=2151 (题目链接) 题意 T支队伍,一共M道题,第i支队伍解出第j道题的概率为p[i][j].问每支队伍至少解出1道题并且解题最多的的队伍至少解 ...

  9. [POJ2151]Check the difficulty of problems (概率dp)

    题目链接:http://poj.org/problem?id=2151 题目大意:有M个题目,T支队伍,第i个队伍做出第j个题目的概率为Pij,问每个队伍都至少做出1个题并且至少有一个队伍做出N题的概 ...

随机推荐

  1. Java基础之集合框架——使用集合Vector<>挑选演员(TryVector)

    控制台程序. public class Person implements Comparable<Person> { // Constructor public Person(String ...

  2. Request、Servlet及其子接口

    最近看tomcat源码,这类接口多的有点眩,整理出来看一下.(基于tomcat4) javax.servlet.ServletRequset接口,和org.apache.catalina.Reques ...

  3. hibernate主键生成机制与save返回

    主键生成机制为assigned时,save之后通过get得不到id(主键),使用identity可以. hibernate主键生成机制1) assigned主键由外部程序负责生成,无需Hibernat ...

  4. 实验十三_编写、应用中断例程_2 & 总结

    编写并安装int 7ch中断例程,功能为完成loop指令的功能 参数:(cx)= 循环次数,(bx)= 位移 以上中断例程安装成功后,对下面的程序进行单步跟踪,尤其注意观察int.iret指令执行前后 ...

  5. decimal类型保留两位小数

    oj.PriceTop =Math.Round(Convert.ToDecimal(reader["PriceTop"]),2);

  6. spfa的SLF优化

    spfa的SLF优化就是small label first 优化,当加入一个新点v的时候如果此时的dis[v]比队首dis[q.front()]还要小的话,就把v点加入到队首,否则把他加入到队尾,因为 ...

  7. codevs 1206 保留两位小数

    http://codevs.cn/problem/1206/ 1206 保留两位小数  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 青铜 Bronze 题解  查看运行结果 ...

  8. centOS6.6升级gcc4.8

    最近想升级mesos0.23.0,结果编译mesos0.23.0需要gcc4.8+,可是centOS6.6最高版本的gcc也只到4.4.7版本,只好手动升级一下了. 下载4.8.2源码 wget ft ...

  9. String[] 转List<String>

    String[] 转List<String> String[] idArr = ids.split(","); List<String> idList = ...

  10. json和字符串/数组/集合的互相转换の神操作总结

    一:前端字符串转JSON的4种方式 1,eval方式解析,恐怕这是最早的解析方式了. function strToJson(str){ var json = eval('(' + str + ')') ...