codevs1288 埃及分数(IDA*)
1288 埃及分数
在古埃及,人们使用单位分数的和(形如1/a的, a是自然数)表示一切有理数。 如:2/3=1/2+1/6,但不允许2/3=1/3+1/3,因为加数中有相同的。 对于一个分数a/b,表示方法有很多种,但是哪种最好呢? 首先,加数少的比加数多的好,其次,加数个数相同的,最小的分数越大越 好。 如: 19/45=1/3 + 1/12 + 1/180 19/45=1/3 + 1/15 + 1/45 19/45=1/3 + 1/18 + 1/30, 19/45=1/4 + 1/6 + 1/180 19/45=1/5 + 1/6 + 1/18. 最好的是最后一种,因为1/18比1/180,1/45,1/30,1/180都大。 给出a,b(0<a<b<1000),编程计算最好的表达方式。
a b
若干个数,自小到大排列,依次是单位分数的分母。
19 45
5 6 18
/*
经典基础IDA*
搜索无指定界限所以手动规定。因为要求分母尽量小,所以先找最小分母做下界
然后规定层数迭代搜 ans存分母
因为从小到大依次搜,层数加深,第一次找到的一定最优。
估价函数:若扩展到i层时,前i个分数之和为c/d,第i个分数为1/e
因为分母递增,所以接下来至少还需要>(a/b-c/d)/(1/e)个分数,总和才能到a/b.
此估价函数可以估计出最少多少步可以到达解,也就是说限定了层数。
*/
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm> #define N 10001
#define ll long long using namespace std; int minn;
ll a,b,deep;
ll ans[N],v[N]; inline ll read()
{
ll x=,f=;char c=getchar();
while(c>''||c<''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} inline ll gcd(ll x,ll y)
{
if(x<y) x^=y,y^=x,x^=y;
int tmp;
while(y){
tmp=x%y;x=y;y=tmp;
}return x;
} inline bool better(int d)
{
for(int i=d;i>=;i--)
return ans[i]==- || v[i]<ans[i];
return false;
} inline int get(ll x,ll y)//当前下界
{
for(int i=;;++i) if(y<x*i) return i;
} bool IDA(int d,int minn,ll aa,ll bb)
{
if(d==deep)
{
if(bb%aa) return false;//分子必须是1.因为已经约分,不必但心aa不为1
v[d]=bb/aa;
if(better(d)) memcpy(ans,v,sizeof(ll)*(d+));
return true;
}
bool flag=false;
minn=std::max(minn,get(aa,bb));//也算剪枝,minn在不断增大
for(int i=minn;;++i)
{
if(bb*(deep-d+)<=i*aa) break;
//估价函数:因为i在增大,所以如果剩下的deep-d+1个分数全部都是1/i,加起来仍然不超过aa/bb,则无解,需要阔搜索层数
v[d]=i;
ll b2=bb*i,a2=aa*i-bb;//计算aa/bb-1/i
ll g=gcd(a2,b2);
if(IDA(d+,minn+,a2/g,b2/g)) flag=true;
}
return flag;
} int main()
{
a=read();b=read();
minn=get(a,b);
for(deep=;;deep++)
{
memset(ans,-,sizeof ans);//don't forget
if(IDA(,get(a,b),a,b))//get 得到搜索下界
break;
}
for(int i=;i<=deep;++i) printf("%d ",ans[i]);
return ;
}
codevs1288 埃及分数(IDA*)的更多相关文章
- CodeVS1288埃及分数(IDA*)
在古埃及,人们使用单位分数的和(形如1/a的, a是自然数)表示一切有理数. 如:2/3=1/2+1/6,但不允许2/3=1/3+1/3,因为加数中有相同的. 对于一个分数a/b,表示方法有很多种,但 ...
- 埃及分数-IDA*
Description 在古埃及,人们使用单位分数的和(形如1/a的, a是自然数)表示一切有理数.如:2/3=1/2+1/6,但不允许2/3=1/3+1/3,因为加数中有相同的.对于一个分数a/b, ...
- codevs1288 埃及分数
题目描述: 在古埃及,人们使用单位分数的和(形如1/a的, a是自然数)表示一切有理数. 如:2/3=1/2+1/6,但不允许2/3=1/3+1/3,因为加数中有相同的. 对于一个分数a/b,表示方法 ...
- 埃及分数&&The Rotation Game&&骑士精神——IDA*
IDA*:非常好用的搜索,可以解决很多深度浅,但是规模大的搜索问题. 估价函数设计思路:观察一步最多能向答案靠近多少. 埃及分数 题目大意: 给出一个分数,由分子a 和分母b 构成,现在要你分解成一系 ...
- 埃及分数问题(带乐观估计函数的迭代加深搜索算法-IDA*)
#10022. 「一本通 1.3 练习 1」埃及分数 [题目描述] 在古埃及,人们使用单位分数的和(形如 $\dfrac{1}{a}$ 的,$a$ 是自然数)表示一切有理数.如:$\dfrac{ ...
- 华为OJ平台——将真分数分解为埃及分数
题目描述: 分子为1的分数称为埃及分数.现输入一个真分数(分子比分母小的分数,叫做真分数),请将该分数分解为埃及分数.如:8/11 = 1/2+1/5+1/55+1/110. 输入: 输入一个真分数, ...
- UVA12558 Egyptian Fractions (HARD version)(埃及分数)
传送门 题目大意 给出一个真分数 a/b,要求出几个互不相同的埃及分数(从大到小),使得它们之和为 a/b (埃及分数意思是分子为1的分数,详见百度百科) 如果有多组解,则分数数量少的优先 如果分数数 ...
- 埃及分数问题_迭代加深搜索_C++
一.题目背景 http://codevs.cn/problem/1288/ 给出一个真分数,求用最少的1/a形式的分数表示出这个真分数,在数量相同的情况下保证最小的分数最大,且每个分数不同. 如 19 ...
- Vijos 1308 埃及分数(迭代加深搜索)
题意: 输入a.b, 求a/b 可以由多少个埃及分数组成. 埃及分数是形如1/a , a是自然数的分数. 如2/3 = 1/2 + 1/6, 但埃及分数中不允许有相同的 ,如不可以2/3 = 1/3 ...
随机推荐
- Caffe2:段错误(核心 已转储)
测试Caffe的时候, cd ~ && python -c 'from caffe2.python import core' 2>/dev/null && ech ...
- PHP 之微信JSSDK类封装
<?php class JSSDK { private $appId; private $appSecret; public function __construct($appId, $appS ...
- Linux下/var/log/btmp文件
今天查看了一下服务器,发现/var/log/btmp日志文件比较大占用磁盘空间,搜索一下,此文件是记录错误登录的日志,就是说有很多人试图使用密码字典登录ssh服务,此日志需要使用lastb程序打开. ...
- codevs1231 最优布线问题
1231 最优布线问题 题目描述 Description 学校需要将n台计算机连接起来,不同的2台计算机之间的连接费用可能是不同的.为了节省费用,我们考虑采用间接数据传输结束,就是一台计算机可以间接地 ...
- Luogu P1550 打井Watering Hole
P1550 [USACO08OCT]打井Watering Hole 题目背景 John的农场缺水了!!! 题目描述 Farmer John has decided to bring water to ...
- jQuery练习:表单模态框
代码:基于事件冒泡原理和事件委托 <!DOCTYPE html> <html lang="zh-cn"> <head> <meta cha ...
- 面试题:你能写一个Vue的双向数据绑定吗?
在目前的前端面试中,vue的双向数据绑定已经成为了一个非常容易考到的点,即使不能当场写出来,至少也要能说出原理.本篇文章中我将会仿照vue写一个双向数据绑定的实例,名字就叫myVue吧.结合注释,希望 ...
- 【codeforces 510C】Fox And Names
[题目链接]:http://codeforces.com/contest/510/problem/C [题意] 给你n个字符串; 问你要怎么修改字典序; (即原本是a,b,c..z现在你可以修改每个字 ...
- Windows学习总结(7)——学会CMD命令提示符的重要性
作为普通电脑用户,大家接触最多的应该 是可视的操作系统界面.可是如果想真正学好计算机,学习好命令提示符可就是必不可少的.它可以更高效的帮助我们处理问题. 命令提示符是在操作系统中,提示进行命令输入的一 ...
- Mysql双主自增长冲突处理
Mysql双主自增长冲突处理 多主互备和主从复制有一些区别,因为多主中都可以对服务器有写权限,所以设计到自增长重复问题 出现的问题(多主自增长ID重复) 1:首先我们通过A,B的test表结 ...