题目描述
小 G 进入了一个神奇的世界,在这个世界,天上会掉下一些馅饼。今天,天上
会随机掉下 k 个馅饼。
每次天上掉下馅饼,小 G 可以选择吃或者不吃(必须在下一个馅饼掉下来之前
作出选择,并且现在决定不吃的话以后也不能吃)。
馅饼有 n 种不同的馅,根据物理定律,天上掉下这 n 种馅饼的概率相同且相互
独立。然而,每一种馅饼 i 都有一个前提馅饼集合 Si。只有当 Si 中的馅饼都吃过
之后,才能吃第 i 种馅饼。比如说,韭菜馅馅饼的 S 中有白菜猪肉馅饼和鲜虾馅饼,
那么小 G 只有在吃过白菜猪肉馅饼和鲜虾馅饼之后,才能吃韭菜馅的馅饼。
同时,每个馅饼还有一个美味值 Pi。今天一天小 G 的幸福度,等于小 G 吃到
的所有馅饼的美味值之和。注意,Pi 可能是负数。
现在考虑,在采用最优策略的前提下,小 G 这一天期望的幸福度是多少?
输入格式
第一行两个正整数 k 和 n,表示馅饼的数量和种类。
以下 n 行,每行若干个数,描述一种馅饼。其中第一个数代表美味值,随后的
整数表示该馅饼的前提馅饼,以 0 结尾。
输出格式
输出一个实数,保留 6 位小数,即在最优策略下期望的幸福度。
样例输入 1
1 2
1 0
2 0
样例输出 1
1.500000
数据范围
对于 20% 的数据,所有的馅饼都没有“前提馅饼”
对于 50% 的数据,1 ≤ k ≤ 10,1 ≤ n ≤ 10
对于 100% 的数据,1 ≤ k ≤ 100,1 ≤ n ≤ 15,美味度为属于 [-10^6; 10^6] 的整数
分析:显然是一道状压dp的题,设f[i][j]为掉落的前i个馅饼中,吃了状态为j的幸福度,当前馅饼i能不能吃取决于状态j是不是i的前提馅饼集合的子集.但是这样并不好维护,我们不知道状态j是否合法.对于这类前面状态约束后面的转移,我们要采用倒着递推的方式来处理.

f[i][j] = max(f[i + 1][j | (1 << (l - 1))] + p[l],f[i + 1][j]).其中l为当前吃的馅饼种类,p为馅饼的幸福度.这样我们从一个已知的合法状态转移到了前面的合法状态.

但是题目要求期望值怎么办呢?期望值实际上就是加权平均值,算一下每一次吃馅饼每一种馅饼掉落的概率,对于第一次吃馅饼,每一种馅饼掉落的概率是1/n,第二次吃馅饼,概率是(1/n) ^ 2,以此类推,所以在转移的时候f[i][j] /= n就可以了.

前面状态约束后面的转移,我们要采用倒着递推的方式来处理!

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; int k, n, p[], stu[( << ) + ];
double f[][( << ) + ]; int main()
{
scanf("%d%d", &k, &n);
for (int i = ; i <= n; i++)
{
scanf("%d", &p[i]);
int x;
while (scanf("%d", &x) && x != )
stu[i] |= ( << (x - ));
}
for (int i = k; i >= ; i--)
for (int j = ; j < ( << n); j++)
{
for (int l = ; l <= n; l++)
if ((stu[l] & j) == stu[l])
f[i][j] += max(f[i + ][j], f[i + ][j | ( << (l - ))] + p[l]);
else
f[i][j] += f[i + ][j];
f[i][j] /= n;
}
printf("%.6lf\n", f[][]); return ;
}

清北学堂模拟赛d7t3 天上掉馅饼的更多相关文章

  1. 清北学堂模拟赛day7 数字碰撞

    /* clj:水题别人都满分你不是你就完了,所以说水题一定要细心一点,有这么几个细节:①前导零的处理,全是零的时候要特判②换行要注意,不要多大一行,剩下就是水水的模拟了 */ #include< ...

  2. 清北学堂模拟赛d2t1 一道图论神题(god)

    题目描述 LYK有一张无向图G={V,E},这张无向图有n个点m条边组成.并且这是一张带权图,只有点权. LYK想把这个图删干净,它的方法是这样的.每次选择一个点,将它删掉,但删这个点是需要代价的.假 ...

  3. 清北学堂模拟赛d7t1 消失的数字

    题目描述 现在,我的手上有 n 个数字,分别是 a1; a2; a3; :::; an.我现在需要删除其中的 k 个数字.当然我不希望随随便便删除,我希望删除 k个数字之后,剩下的 n - k 个数中 ...

  4. 清北学堂模拟赛d6t2 刀塔

    分析:看到最小值最大就很显然是二分了吧,二分一下最小值,把小于它的数给删掉,然后看每个数向左边能延伸多长,往右边能延伸多长,最后统计一下有没有可行答案就可以了. #include <cstdio ...

  5. 清北学堂模拟赛d4t1 a

    分析:大模拟,没什么好说的.我在考场上犯了一个超级低级的错误:while (scanf("%s",s + 1)),导致了死循环,血的教训啊,以后要记住了. /* 1.没有发生改变, ...

  6. 清北学堂模拟赛d3t6 c

    分析:比较神奇的一道题.要把树变成环肯定要先变成链,然后把链给拼接成环.接下来考虑一个脑洞大开的树形dp:设f[i][0]表示i不与父节点相连的链数,f[i][1]表示i与父节点相连的链数,先考虑怎么 ...

  7. 清北学堂模拟赛day7 错排问题

    /* 考虑一下已经放回m本书的情况,已经有书的格子不要管他,考虑没有书的格子,不考虑错排有(n-m)!种,在逐步考虑有放回原来位置的情况,已经放出去和已经被占好的格子,不用考虑,剩下全都考虑,设t=x ...

  8. 清北学堂模拟赛day7 石子合并加强版

    /* 注意到合并三堆需要枚举两个端点,其实可以开一个数组记录合并两堆的结果,标程好像用了一个神奇的优化 */ #include<iostream> #include<cstdio&g ...

  9. 清北学堂模拟赛d6t6 棋盘迷宫

    3.棋盘迷宫(boardgame.pas/c/cpp)(boardgame.in/out)时间限制:5s/空间限制:256M[题目描述]小 A 和小 Z 是非常要好的朋友, 而且他们都对迷宫游戏非常有 ...

随机推荐

  1. 洛谷P2303 [SDOi2012]Longge的问题

    题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). ...

  2. SpringMVC+MyBaties关于上传(跟新)图片的问题

    /** * 方法名:uploadPhoto * 描 述:TODO(上传图片) * 作 者:池彦龙 * 时 间:2017/03/30 * 返回类型: * 参 数: * 异 常: */ Controlle ...

  3. web自动化测试—selenium操作游览器属性

    # coding=utf-8'''web游览器属性: 页面最大化 maximize_window() 获取当前页面地址 current_url 代码 page_source title title 后 ...

  4. AirtestIDE详解(跨平台的UI自动化编辑器)

    Airtest 是网易出品的一款基于图像识别和poco控件识别的一款UI自动化测试工具. AirtestIDE 是一个跨平台.多端(Windows.web.android.ios.游戏)的UI自动化测 ...

  5. Elasticsearch之CURL命令的GET

    这是个查询命令. 前期博客 Elasticsearch之CURL命令的PUT和POST对比 1. 以上是根据员工id查询. 即在任意的查询字符串中添加pretty参数,es可以得到易于我们识别的jso ...

  6. [ HNOI 2006 ] 公路修建问题

    \(\\\) \(Description\) 一个\(N\)个点\(M\)条边的图,每条边可以选择\(w_i,p_i\)两个边权之一,现求一个生成树上的最大边权最小值,要求这棵生成树上至少有\(K\) ...

  7. bindColumn、bindParam与bindValue的区别

    bindColumn:绑定一列到一个 PHP 变量(类似于list()函数为变量赋值) <?php //连接数据库函数 functionconnect() { try { $dbh = new ...

  8. [Android]异常5-throwable:java.lang.OutOfMemoryError: pthread_create

    背景:线程初始化耗时任务 异常原因: 可能一>多个new Thread()嵌套 解决办法有: 解决一>使用Handler分离new Thread()嵌套 注: 06-30 09:12:26 ...

  9. Unity引擎 UGUI

    Unity UGUI讲解 1.导入UI图片资源 2.设置参数: TextureType(纹理类型) 精灵 2D and UI SpriteMode(精灵模式)  Single(单) multiple( ...

  10. .net 大数据量,查找Where优化(List的Contains与Dictionary的ContainsKey的比较)

    最近优化一个where查询条件,查询时间很慢,改为用Dictionary就很快了.  一.样例 假设:listPicsTemp 有100w条数据,pictures有1000w条数据. 使用第1段代码执 ...