Time Limit: 2000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u

Submit
Status

Description

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= p
max(u) of power, may consume an amount 0 <= c(u) <= min(s(u),c max(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0
for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= l
max(u,v) of power delivered by u to v. Let Con=Σ uc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.





An example is in figure 1. The label x/y of power station u shows that p(u)=x and p
max(u)=y. The label x/y of consumer u shows that c(u)=x and c max(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and l
max(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines).
Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of l
max(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of p
max(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of c
max(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a
separate line.

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
(3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
(0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum
value of Con is 15. The second data set encodes the network from figure 1.

Source

Southeastern Europe 2003

#include<stdio.h>
#include<string.h>
#include<queue>
#include<stack>
#include<vector>
#include<algorithm>
using namespace std;
#define MAX 100+10
#define INF 10000000+10
int m,n,np,mp;
int vis[MAX],dis[MAX],head[MAX],cur[MAX];
int top;
struct node
{
int u,v,cap,flow,next;
}edge[40000+10];
void init()
{
top=0;
memset(head,-1,sizeof(head));
}
void add(int a,int b,int c)
{
node E1={a,b,c,0,head[a]};
edge[top]=E1;
head[a]=top++;
node E2={b,a,0,0,head[b]};
edge[top]=E2;
head[b]=top++;
}
void getmap()
{
int a,b,c;
while(mp--)
{
scanf(" (%d,%d)%d",&a,&b,&c);
add(a+1,b+1,c);
}
while(n--)
{
scanf(" (%d)%d",&b,&c);
add(0,b+1,c);
}
while(np--)
{
scanf(" (%d)%d",&a,&c);
add(a+1,m+1,c);
}
}
bool bfs(int s,int e)
{
queue<int>q;
memset(vis,0,sizeof(vis));
memset(dis,-1,sizeof(dis));
vis[s]=1;
dis[s]=0;
if(!q.empty()) q.pop();
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=head[u];i!=-1;i=edge[i].next)
{
node E=edge[i];
if(E.cap>E.flow&&!vis[E.v])
{
vis[E.v]=1;
dis[E.v]=dis[E.u]+1;
if(E.v==e) return true;
q.push(E.v);
}
}
}
return false;
}
int dfs(int x,int a,int e)
{
if(x==e||a==0)
return a;
int flow=0,f;
for(int i=cur[x];i!=-1;i=edge[i].next)
{
node& E=edge[i];
if(dis[x]+1==dis[E.v]&&(f=dfs(E.v,min(a,E.cap-E.flow),e))>0)
{
E.flow+=f;
a-=f;
flow+=f;
edge[i^1].flow-=f;
if(a==0) break;
}
}
return flow;
}
int MAXflow(int s,int e)
{
int flow=0;
while(bfs(s,e))
{
memcpy(cur,head,sizeof(head));
flow+=dfs(s,INF,e);
}
return flow;
}
int main()
{
while(scanf("%d%d%d%d",&m,&n,&np,&mp)!=EOF)
{
init();
getmap();
printf("%d\n",MAXflow(0,m+1));
}
return 0;
}

poj--1459--Power Network(最大流,超级源超级汇)的更多相关文章

  1. POJ 1459 Power Network 最大流(Edmonds_Karp算法)

    题目链接: http://poj.org/problem?id=1459 因为发电站有多个,所以需要一个超级源点,消费者有多个,需要一个超级汇点,这样超级源点到发电站的权值就是发电站的容量,也就是题目 ...

  2. POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Network / FZU 1161 (网络流,最大流)

    POJ 1459 Power Network / HIT 1228 Power Network / UVAlive 2760 Power Network / ZOJ 1734 Power Networ ...

  3. poj 1459 Power Network

    题目连接 http://poj.org/problem?id=1459 Power Network Description A power network consists of nodes (pow ...

  4. 2018.07.06 POJ 1459 Power Network(多源多汇最大流)

    Power Network Time Limit: 2000MS Memory Limit: 32768K Description A power network consists of nodes ...

  5. poj 1459 Power Network【建立超级源点,超级汇点】

    Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 25514   Accepted: 13287 D ...

  6. POJ 1459 Power Network(网络流 最大流 多起点,多汇点)

    Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 22987   Accepted: 12039 D ...

  7. 网络流--最大流--POJ 1459 Power Network

    #include<cstdio> #include<cstring> #include<algorithm> #include<queue> #incl ...

  8. poj 1459 Power Network : 最大网络流 dinic算法实现

    点击打开链接 Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 20903   Accepted:  ...

  9. POJ - 1459 Power Network(最大流)(模板)

    1.看了好久,囧. n个节点,np个源点,nc个汇点,m条边(对应代码中即节点u 到节点v 的最大流量为z) 求所有汇点的最大流. 2.多个源点,多个汇点的最大流. 建立一个超级源点.一个超级汇点,然 ...

  10. POJ 1459 Power Network(网络最大流,dinic算法模板题)

    题意:给出n,np,nc,m,n为节点数,np为发电站数,nc为用电厂数,m为边的个数.      接下来给出m个数据(u,v)z,表示w(u,v)允许传输的最大电力为z:np个数据(u)z,表示发电 ...

随机推荐

  1. POJ-3348 Cows 计算几何 求凸包 求多边形面积

    题目链接:https://cn.vjudge.net/problem/POJ-3348 题意 啊模版题啊 求凸包的面积,除50即可 思路 求凸包的面积,除50即可 提交过程 AC 代码 #includ ...

  2. vue非父子组件间传参问题

    最近在使用vue进行开发,遇到了组件之间传参的问题,此处主要是针对非父子组件之间的传参问题进行总结,方法如下:一.如果两个组件用友共同的父组件,即 FatherComponent.vue代码 < ...

  3. 【codeforces 128C】Games with Rectangle

    [题目链接]:http://codeforces.com/problemset/problem/128/C [题意] 让你一层一层地在n*m的网格上画k个递进关系的长方形;(要求一个矩形是包含在另外一 ...

  4. 2015 Multi-University Training Contest 3 hdu 5326 Work

    Work Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  5. 解决The hierarchy of the type is inconsistent错误

    可能的原因:自己的类继承于某个类,这个类或者这个类继承的类或者再往上继承的某个类所在的jar包没有被引入. 比如:使用Spring的AOP时,假设须要继承MethodBeforeAdvice和Afte ...

  6. JAVA学习第二十七课(多线程(六))- 多生产者多消费者问题(JDK1.5新特性)

    多生产者多消费者问题 以生产馒头 消费馒头为例. class Resource { private String name; private int count = 1; private boolea ...

  7. Android中的AsyncTask异步任务的简单实例

    在 Android中的AsyncTask异步任务的简介 一文中.已经对 安卓 异步任务操作做了简单的介绍.这里,直接将上文中的异步任务做了一个实例.实现异步操作更新UI线程,相比开启子线程更新来说逻辑 ...

  8. Effective JavaScript Item 49 对于数组遍历,优先使用for循环,而不是for..in循环

    本系列作为Effective JavaScript的读书笔记. 对于以下这段代码,能看出最后的平均数是多少吗? var scores = [98, 74, 85, 77, 93, 100, 89]; ...

  9. 【Android应用开发技术:基础构建】命令行下的Android应用开发

    作者:郭孝星 微博:郭孝星的新浪微博 邮箱:allenwells@163.com 博客:http://blog.csdn.net/allenwells github:https://github.co ...

  10. linux中不同颜色的文件代表什么不同的类型

    linux 文件颜色的含义,蓝色代表目录,绿色代表可执行文件,红色表示压缩文件,浅蓝色表示链接文件,灰色表示其他文件,红色闪烁表示链接的文件有问题了,黄色表示设备文件.蓝色文件----------目. ...